[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fth/pnegmi/99-07.html
   My bibliography  Save this paper

Repeated Games played by Cryptographically Sophesticated Players

Author

Listed:
  • Gossner, O.
Abstract
One of the main goals of bounded rationality models is to understand the limitations of agent's abilities in building representations of strategic situations as maximization problems and in solving these problems. Modern cryptography relies on the assumption that agents's computations should be implementable by polynominal Turing machines and on the exstence of a trapdoor function. Uder those assumption, we prove that very correlated equilibrium of the original infinitely repreated game can be implemented through public communication only.

Suggested Citation

  • Gossner, O., 1999. "Repeated Games played by Cryptographically Sophesticated Players," Papers 99-07, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
  • Handle: RePEc:fth:pnegmi:99-07
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robert J. Aumann & Lloyd S. Shapley, 2013. "Long Term Competition -- A Game-Theoretic Analysis," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 627-640, November.
    2. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    3. José E. Vila & Amparo Urbano Salvador, 1997. "Pre-play communication and coordination in two-player games," Working Papers. Serie AD 1997-26, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    4. Abraham Neyman, 1998. "Finitely Repeated Games with Finite Automata," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 513-552, August.
    5. Forges, Francoise, 1990. "Universal Mechanisms," Econometrica, Econometric Society, vol. 58(6), pages 1341-1364, November.
    6. Binmore, Ken, 1987. "Modeling Rational Players: Part I," Economics and Philosophy, Cambridge University Press, vol. 3(2), pages 179-214, October.
    7. Binmore, Kenneth G. & Samuelson, Larry, 1992. "Evolutionary stability in repeated games played by finite automata," Journal of Economic Theory, Elsevier, vol. 57(2), pages 278-305, August.
    8. Binmore, Ken, 1988. "Modeling Rational Players: Part II," Economics and Philosophy, Cambridge University Press, vol. 4(1), pages 9-55, April.
    9. José E. Vila & Amparo Urbano, 1999. "- Unmediated Talk Under Incomplete Information," Working Papers. Serie AD 1999-07, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    10. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    11. Amparo Urbano & Penélope Hernández, 2001. "Communication And Automata," Working Papers. Serie AD 2001-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    13. Urbano, A. & Vila, J. E., 2004. "Unmediated communication in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 46(1), pages 143-173, January.
    14. Mertens, J.F., 1980. "A note on the characteristic function of supergames," LIDAM Reprints CORE 429, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halpern, Joseph Y. & Pass, Rafael & Seeman, Lior, 2019. "The truth behind the myth of the Folk theorem," Games and Economic Behavior, Elsevier, vol. 117(C), pages 479-498.
    2. Olivier Gossner & Tristan Tomala, 2007. "Secret Correlation in Repeated Games with Imperfect Monitoring," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 413-424, May.
    3. Cedric Wanko, 2011. "A Secure Reversion Protocol That Generates Pay-Offs Dominating Rewards From Correlated Equilibrium," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(06), pages 887-904.
    4. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    5. Urbano, A. & Vila, J. E., 2004. "Unmediated communication in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 46(1), pages 143-173, January.
    6. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    7. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    8. Hannu Vartiainen, 2009. "A Simple Model of Secure Public Communication," Theory and Decision, Springer, vol. 67(1), pages 101-122, July.
    9. Olivier Gossner & Tristan Tomala, 2006. "Empirical Distributions of Beliefs Under Imperfect Observation," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 13-30, February.
    10. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    11. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    2. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    3. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    4. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    5. Sent, Esther-Mirjam, 2004. "The legacy of Herbert Simon in game theory," Journal of Economic Behavior & Organization, Elsevier, vol. 53(3), pages 303-317, March.
    6. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.
    7. Theodore Andronikos & Alla Sirokofskich & Kalliopi Kastampolidou & Magdalini Varvouzou & Konstantinos Giannakis & Alexander Singh, 2018. "Finite Automata Capturing Winning Sequences for All Possible Variants of the PQ Penny Flip Game," Mathematics, MDPI, vol. 6(2), pages 1-26, February.
    8. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    9. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    10. Bavly, Gilad & Neyman, Abraham, 2014. "Online concealed correlation and bounded rationality," Games and Economic Behavior, Elsevier, vol. 88(C), pages 71-89.
    11. Kalai, E & Neme, A, 1992. "The Strength of a Little Perfection," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 335-355.
    12. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    13. Gagen, Michael, 2013. "Isomorphic Strategy Spaces in Game Theory," MPRA Paper 46176, University Library of Munich, Germany.
    14. Compte, Olivier & Postlewaite, Andrew, 2015. "Plausible cooperation," Games and Economic Behavior, Elsevier, vol. 91(C), pages 45-59.
    15. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    16. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    18. van Damme, E.E.C., 1995. "Game theory : The next stage," Other publications TiSEM 7779b0f9-bef5-45c7-ae6b-7, Tilburg University, School of Economics and Management.
    19. Beal, Sylvain & Querou, Nicolas, 2007. "Bounded rationality and repeated network formation," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 71-89, July.
    20. Neyman, Abraham & Okada, Daijiro, 2009. "Growth of strategy sets, entropy, and nonstationary bounded recall," Games and Economic Behavior, Elsevier, vol. 66(1), pages 404-425, May.

    More about this item

    Keywords

    GAME THEORY mathematiques et informatique; 200; avenue de la Republique 9 2001 Nanterre CEDEX. 23p.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:pnegmi:99-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.