[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2015-02.html
   My bibliography  Save this paper

Bayesian Estimation of Time-Changed Default Intensity Models

Author

Abstract
We estimate a reduced-form model of credit risk that incorporates stochastic volatility in default intensity via stochastic time-change. Our Bayesian MCMC estimation method overcomes nonlinearity in the measurement equation and state-dependent volatility in the state equation. We implement on firm-level time-series of CDS spreads, and find strong in-sample evidence of stochastic volatility in this market. Relative to the widely-used CIR model for the default intensity, we find that stochastic time-change offers modest benefit in fitting the cross-section of CDS spreads at each point in time, but very large improvements in fitting the time-series, i.e., in bringing agreement between the moments of the default intensity and the model-implied moments. Finally, we obtain model-implied out-of-sample density forecasts via auxiliary particle filter, and find that the time-changed model strongly outperforms the baseline CIR model.

Suggested Citation

  • Michael B. Gordy & Pawel J. Szerszen, 2015. "Bayesian Estimation of Time-Changed Default Intensity Models," Finance and Economics Discussion Series 2015-2, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2015-02
    DOI: 10.17016/FEDS.2015.002
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/econresdata/feds/2015/files/2015002pap.pdf
    File Function: Full text
    Download Restriction: no

    File URL: http://dx.doi.org/10.17016/FEDS.2015.002
    File Function: http://dx.doi.org/10.17016/FEDS.2015.002
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2015.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    2. Michael K. Pitt & Neil Shephard, 1999. "Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(1), pages 63-85, January.
    3. David A. Chapman & Neil D. Pearson, 2000. "Is the Short Rate Drift Actually Nonlinear?," Journal of Finance, American Finance Association, vol. 55(1), pages 355-388, February.
    4. Robert A. Jarrow & David Lando & Fan Yu, 2008. "Default Risk And Diversification: Theory And Empirical Implications," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 19, pages 455-480, World Scientific Publishing Co. Pte. Ltd..
    5. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    6. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    7. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    8. Sylvia Frühwirth‐Schnatter, 1994. "Data Augmentation And Dynamic Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 183-202, March.
    9. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    10. Duffee, Gregory R, 1999. "Estimating the Price of Default Risk," The Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 197-226.
    11. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    12. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    13. Joost Driessen, 2005. "Is Default Event Risk Priced in Corporate Bonds?," The Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 165-195.
    14. Michael B. Gordy & SØren Willemann, 2012. "Constant Proportion Debt Obligations: A Postmortem Analysis of Rating Models," Management Science, INFORMS, vol. 58(3), pages 476-492, March.
    15. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Jun Pan & Kenneth J. Singleton, 2008. "Default and Recovery Implicit in the Term Structure of Sovereign CDS Spreads," Journal of Finance, American Finance Association, vol. 63(5), pages 2345-2384, October.
    18. Stroud J.R. & Muller P. & Polson N.G., 2003. "Nonlinear State-Space Models With State-Dependent Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 377-386, January.
    19. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    20. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
    21. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zinna, Gabriele, 2013. "Sovereign default risk premia: Evidence from the default swap market," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 15-35.
    2. repec:wyi:journl:002109 is not listed on IDEAS
    3. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    4. Arakelyan, Armen & Rubio, Gonzalo & Serrano, Pedro, 2015. "The reward for trading illiquid maturities in credit default swap markets," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 376-389.
    5. Alain Monfort & Fulvio Pegoraro & Jean-Paul Renne & Guillaume Roussellet, 2021. "Affine Modeling of Credit Risk, Pricing of Credit Events, and Contagion," Management Science, INFORMS, vol. 67(6), pages 3674-3693, June.
    6. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Manfred Frühwirth & Paul Schneider & Leopold Sögner, 2010. "The Risk Microstructure of Corporate Bonds: A Case Study from the German Corporate Bond Market," European Financial Management, European Financial Management Association, vol. 16(4), pages 658-685, September.
    9. Jian Luo & Xiaoxia Ye & May Hu, 2016. "Counter-Credit-Risk Yield Spreads: A Puzzle in China's Corporate Bond Market," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 203-241, June.
    10. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    11. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    12. Stephanie Heck, 2022. "Corporate bond yields and returns: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(2), pages 179-201, June.
    13. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    14. Pawel J. Szerszen, 2009. "Bayesian analysis of stochastic volatility models with Lévy jumps: application to risk analysis," Finance and Economics Discussion Series 2009-40, Board of Governors of the Federal Reserve System (U.S.).
    15. Díaz, Antonio & Groba, Jonatan & Serrano, Pedro, 2013. "What drives corporate default risk premia? Evidence from the CDS market," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 529-563.
    16. Abel Elizalde, 2006. "Credit Risk Models I: Default Correlation in Intensity Models," Working Papers wp2006_0605, CEMFI.
    17. Arakelyan, Armen & Serrano, Pedro, 2016. "Liquidity in Credit Default Swap Markets," Journal of Multinational Financial Management, Elsevier, vol. 37, pages 139-157.
    18. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012. "Probabilistic forecasts of volatility and its risk premia," Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
    19. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    21. Chernov, Mikhail & Graveline, Jeremy & Zviadadze, Irina, 2018. "Crash Risk in Currency Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(1), pages 137-170, February.

    More about this item

    Keywords

    Bayesian estimation; CDS; CIR process; credit derivatives; MCMC; particle filter; stochastic time change;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2015-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.