[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2014-03.html
   My bibliography  Save this paper

Trimmed-Mean Inflation Statistics: Just Hit the One in the Middle

Author

Listed:
  • Brent Meyer
  • Guhan Venkatu
Abstract
This paper reinvestigates the performance of trimmed-mean inflation measures some 20 years since their inception, asking whether there is a particular trimmed-mean measure that dominates the median consumer price index (CPI). Unlike previous research, we evaluate the performance of symmetric and asymmetric trimmed means using a well known equality of prediction test. We find that there is a large swath of trimmed means that have statistically indistinguishable performance. Also, although the swath of statistically similar trims changes slightly over different sample periods, it always includes the median CPI - an extreme trim that holds conceptual and computational advantages. We conclude with a simple forecasting exercise that highlights the advantage of the median CPI (and trimmed-mean estimators in general) relative to other standard measures in forecasting headline inflation.

Suggested Citation

  • Brent Meyer & Guhan Venkatu, 2014. "Trimmed-Mean Inflation Statistics: Just Hit the One in the Middle," FRB Atlanta Working Paper 2014-3, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:2014-03
    as

    Download full text from publisher

    File URL: https://frbatlanta.org/-/media/Documents/research/publications/wp/2014/wp1403.pdf?la=en
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael F. Bryan & Stephen G. Cecchetti, 1994. "Measuring Core Inflation," NBER Chapters, in: Monetary Policy, pages 195-219, National Bureau of Economic Research, Inc.
    2. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    3. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    4. Alan K. Detmeister, 2011. "The usefulness of core PCE inflation measures," Finance and Economics Discussion Series 2011-56, Board of Governors of the Federal Reserve System (U.S.).
    5. Theodore M. Crone & N. Neil K. Khettry & Loretta J. Mester & Jason A. Novak, 2013. "Core Measures of Inflation as Predictors of Total Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2‐3), pages 505-519, March.
    6. Jim Dolmas, 2005. "Trimmed mean PCE inflation," Working Papers 0506, Federal Reserve Bank of Dallas.
    7. Andrea Brischetto & Anthony Richards, 2006. "The Performance of Trimmed Mean Measures of Underlying Inflation," RBA Research Discussion Papers rdp2006-10, Reserve Bank of Australia.
    8. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    9. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    10. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    11. Michael F. Bryan & Christopher J. Pike, 1991. "Median price changes: an alternative approach to measuring current monetary inflation," Economic Commentary, Federal Reserve Bank of Cleveland, issue Dec.
    12. repec:mcb:jmoncb:v:45:y:2013:i::p:505-519 is not listed on IDEAS
    13. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    14. Michael F. Bryan & Stephen G. Cecchetti & Rodney L. Wiggins II, 1997. "Efficient Inflation Estimation," NBER Working Papers 6183, National Bureau of Economic Research, Inc.
    15. Brent Meyer & Mehmet Pasaogullari, 2010. "Simple ways to forecast inflation: what works best?," Economic Commentary, Federal Reserve Bank of Cleveland, issue Dec.
    16. Smith, Julie K, 2004. "Weighted Median Inflation: Is This Core Inflation?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 253-263, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amy Higgins & Randal J. Verbrugge, 2015. "Tracking Trend Inflation: Nonseasonally Adjusted Variants of the Median and Trimmed-Mean CPI," Working Papers (Old Series) 1527, Federal Reserve Bank of Cleveland.
    2. Elena Deryugina & Alexey Ponomarenko & Andrey Sinyakov & Constantine Sorokin, 2018. "Evaluating underlying inflation measures for Russia," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 11(2), pages 124-145, May.
    3. Shahzad Ahmad & Farooq Pasha, 2015. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 1-42.
    4. Jim Dolmas & Evan F. Koenig, 2019. "Two Measures of Core Inflation: A Comparison," Review, Federal Reserve Bank of St. Louis, vol. 101(4).
    5. Elena Deryugina & Alexey Ponomarenko, 2020. "Disinflation and Reliability of Underlying Inflation Measures," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(1), pages 91-111, March.
    6. Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015. "Evaluating the Performance of Inflation Forecasting Models of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
    7. Brent Meyer & Saeed Zaman, 2019. "The usefulness of the median CPI in Bayesian VARs used for macroeconomic forecasting and policy," Empirical Economics, Springer, vol. 57(2), pages 603-630, August.
    8. John O’Trakoun, 2023. "An alternative measure of core inflation: the Trimmed Persistence PCE price index," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 58(4), pages 205-223, October.
    9. Yiqun Gloria Chen, 2019. "Inflation, Inflation Expectations, and the Phillips Curve: Working Paper 2019-07," Working Papers 55501, Congressional Budget Office.
    10. Brent Meyer & Saeed Zaman, 2013. "It’s not just for inflation: The usefulness of the median CPI in BVAR forecasting," Working Papers (Old Series) 1303, Federal Reserve Bank of Cleveland.
    11. Verbrugge, Randal & Zaman, Saeed, 2024. "Improving inflation forecasts using robust measures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 735-745.
    12. Garciga, Christian & Knotek II, Edward S., 2019. "Forecasting GDP growth with NIPA aggregates: In search of core GDP," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1814-1828.
    13. Iris Day, 2017. "Underlying Consumer Price Inflation in China," RBA Bulletin (Print copy discontinued), Reserve Bank of Australia, pages 29-36, December.
    14. Randal J. Verbrugge, 2021. "Is It Time to Reassess the Focal Role of Core PCE Inflation?," Working Papers 21-10, Federal Reserve Bank of Cleveland.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brent Meyer & Saeed Zaman, 2019. "The usefulness of the median CPI in Bayesian VARs used for macroeconomic forecasting and policy," Empirical Economics, Springer, vol. 57(2), pages 603-630, August.
    2. Brent Meyer & Saeed Zaman, 2013. "It’s not just for inflation: The usefulness of the median CPI in BVAR forecasting," Working Papers (Old Series) 1303, Federal Reserve Bank of Cleveland.
    3. Amy Higgins & Randal J. Verbrugge, 2015. "Tracking Trend Inflation: Nonseasonally Adjusted Variants of the Median and Trimmed-Mean CPI," Working Papers (Old Series) 1527, Federal Reserve Bank of Cleveland.
    4. Alan K. Detmeister, 2011. "The usefulness of core PCE inflation measures," Finance and Economics Discussion Series 2011-56, Board of Governors of the Federal Reserve System (U.S.).
    5. Alan K. Detmeister, 2012. "What should core inflation exclude?," Finance and Economics Discussion Series 2012-43, Board of Governors of the Federal Reserve System (U.S.).
    6. Garciga, Christian & Knotek II, Edward S., 2019. "Forecasting GDP growth with NIPA aggregates: In search of core GDP," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1814-1828.
    7. Gamber, Edward N. & Smith, Julie K. & Eftimoiu, Raluca, 2015. "The dynamic relationship between core and headline inflation," Journal of Economics and Business, Elsevier, vol. 81(C), pages 38-53.
    8. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2017. "The New York Fed Staff Underlying Inflation Gauge (UIG)," Economic Policy Review, Federal Reserve Bank of New York, issue 23-2, pages 1-32.
    9. Robert W. Rich & Charles Steindel, 2007. "A comparison of measures of core inflation," Economic Policy Review, Federal Reserve Bank of New York, vol. 13(Dec), pages 19-38.
    10. Mark A. Wynne, 2008. "Core inflation: a review of some conceptual issues," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 205-228.
    11. Ball, Laurence & Carvalho, Carlos & Evans, Christopher & Antonio Ricci, Luca, 2024. "Weighted Median Inflation Around the World: A Measure of Core Inflation," Journal of International Money and Finance, Elsevier, vol. 142(C).
    12. Laurence Ball & Sandeep Mazumder, 2020. "The Nonpuzzling Behavior of Median Inflation," Central Banking, Analysis, and Economic Policies Book Series, in: Gonzalo Castex & Jordi Galí & Diego Saravia (ed.),Changing Inflation Dynamics,Evolving Monetary Policy, edition 1, volume 27, chapter 3, pages 049-070, Central Bank of Chile.
    13. Laurence M. Ball & Daniel Leigh & Prachi Mishra & Antonio Spilimbergo, 2021. "Measuring U.S. Core Inflation: The Stress Test of COVID-19," NBER Working Papers 29609, National Bureau of Economic Research, Inc.
    14. Verbrugge, Randal & Zaman, Saeed, 2024. "Improving inflation forecasts using robust measures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 735-745.
    15. Theodore M. Crone & N. Neil K. Khettry & Loretta J. Mester & Jason A. Novak, 2013. "Core Measures of Inflation as Predictors of Total Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2‐3), pages 505-519, March.
    16. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    17. Oguz Atuk & Mustafa Utku Ozmen, 2009. "Design and Evaluation of Core Inflation Measures for Turkey," Working Papers 0903, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    18. Edward N. Gamber & Julie K. Smith, 2016. "Time-series measures of core inflation," Working Papers 2016-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    19. Brent Meyer & Murat Tasci, 2015. "Lessons for forecasting unemployment in the United States: use flow rates, mind the trend," FRB Atlanta Working Paper 2015-1, Federal Reserve Bank of Atlanta.
    20. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.

    More about this item

    Keywords

    inflation; inflation forecasting; trimmed-mean estimators;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2014-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rob Sarwark (email available below). General contact details of provider: https://edirc.repec.org/data/frbatus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.