[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2012.09.html
   My bibliography  Save this paper

REMIND-D: A Hybrid Energy-Economy Model of Germany

Author

Listed:
  • Eva Schmid

    (Potsdam Institute for Climate Impact Research)

  • Brigitte Knopf

    (Potsdam Institute for Climate Impact Research)

  • Nico Bauer

    (Potsdam Institute for Climate Impact Research)

Abstract
This paper presents a detailed documentation of the hybrid energy-economy model REMIND-D. REMIND-D is a Ramsey-type growth model for Germany that integrates a detailed bottom-up energy system module, coupled by a hard link. The model provides a quantitative framework for analyzing long-term domestic CO2 emission reduction scenarios. Due to its hybrid nature, REMIND-D facilitates an integrated analysis of the interplay between technological mitigation options in the different sectors of the energy system as well as overall macroeconomic dynamics. REMIND-D is an intertemporal optimization model, featuring optimal annual mitigation effort and technology deployment as a model output. In order to provide transparency on model assumptions, this paper gives an overview of the model structure, the input data used to calibrate REMIND-D to the Federal Republic of Germany, as well as the techno-economic parameters of the technologies considered in the energy system module.

Suggested Citation

  • Eva Schmid & Brigitte Knopf & Nico Bauer, 2012. "REMIND-D: A Hybrid Energy-Economy Model of Germany," Working Papers 2012.09, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2012.09
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2012-009.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hourcade, Jean-Charles & Robinson, John, 1996. "Mitigating factors : Assessing the costs of reducing GHG emissions," Energy Policy, Elsevier, vol. 24(10-11), pages 863-873.
    2. Fichtner, W. & Goebelt, M. & Rentz, O., 2001. "The efficiency of international cooperation in mitigating climate change: analysis of joint implementation, the clean development mechanism and emission trading for the Federal Republic of Germany, th," Energy Policy, Elsevier, vol. 29(10), pages 817-830, August.
    3. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    4. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    5. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "A World Induced Technical Change Hybrid Model," The Energy Journal, , vol. 27(2_suppl), pages 13-37, June.
    6. Schmid, Eva & Knopf, Brigitte, 2012. "Ambitious mitigation scenarios for Germany: A participatory approach," Energy Policy, Elsevier, vol. 51(C), pages 662-672.
    7. Nico Bauer & Ottmar Edenhofer & Socrates Kypreos, 2008. "Linking energy system and macroeconomic growth models," Computational Management Science, Springer, vol. 5(1), pages 95-117, February.
    8. Landry, Maurice & Malouin, Jean-Louis & Oral, Muhittin, 1983. "Model validation in operations research," European Journal of Operational Research, Elsevier, vol. 14(3), pages 207-220, November.
    9. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    10. Meyer, Bernd & Distelkamp, Martin & Wolter, Marc Ingo, 2007. "Material efficiency and economic-environmental sustainability. Results of simulations for Germany with the model PANTA RHEI," Ecological Economics, Elsevier, vol. 63(1), pages 192-200, June.
    11. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    12. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    13. Blesl, Markus & Das, Anjana & Fahl, Ulrich & Remme, Uwe, 2007. "Role of energy efficiency standards in reducing CO2 emissions in Germany: An assessment with TIMES," Energy Policy, Elsevier, vol. 35(2), pages 772-785, February.
    14. Yamashita, Kei & Barreto, Leonardo, 2005. "Energyplexes for the 21st century: Coal gasification for co-producing hydrogen, electricity and liquid fuels," Energy, Elsevier, vol. 30(13), pages 2453-2473.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    2. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    3. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar & Sullivan, Patrick & Schmid, Eva & Bauer, Nico & Böttger, Diana & Pietzcker, Robert, 2015. "Representing power sector variability and the integration of variable renewables in long-term energy-economy models using residual load duration curves," Energy, Elsevier, vol. 90(P2), pages 1799-1814.
    4. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    5. Lopion, Peter & Markewitz, Peter & Robinius, Martin & Stolten, Detlef, 2018. "A review of current challenges and trends in energy systems modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 156-166.
    6. Ludig, Sylvie & Schmid, Eva & Haller, Markus & Bauer, Nico, 2015. "Assessment of transformation strategies for the German power sector under the uncertainty of demand development and technology availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 143-156.
    7. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2014. "Potential impact of transition to a low-carbon transport system in Iceland," Energy Policy, Elsevier, vol. 69(C), pages 127-142.
    8. Schmid, Eva & Knopf, Brigitte, 2012. "Ambitious mitigation scenarios for Germany: A participatory approach," Energy Policy, Elsevier, vol. 51(C), pages 662-672.
    9. Schmid, Eva & Pahle, Michael & Knopf, Brigitte, 2013. "Renewable electricity generation in Germany: A meta-analysis of mitigation scenarios," Energy Policy, Elsevier, vol. 61(C), pages 1151-1163.
    10. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    2. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    3. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    4. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    5. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    6. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    9. Nemet, Gregory F., 2009. "Interim monitoring of cost dynamics for publicly supported energy technologies," Energy Policy, Elsevier, vol. 37(3), pages 825-835, March.
    10. ?gel de la Fuente, "undated". "Convergence Across Countries And Regions: Theory And Empirics," UFAE and IAE Working Papers 447.00, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    11. Barro, Robert J, 1990. "Government Spending in a Simple Model of Endogenous Growth," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 103-126, October.
    12. Jaume Ventura & Francesco Caselli, 2000. "A Representative Consumer Theory of Distribution," American Economic Review, American Economic Association, vol. 90(4), pages 909-926, September.
    13. Fabrice Collard & Omar Licandro, 2020. "The neoclassical model and the welfare costs of selection," Discussion Papers 2020/03, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    14. Olimpia NEAGU, 2012. "Measuring the Effects of Human Capital on Growth in the Case of Romania," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 83-92.
    15. Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
    16. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    17. Xavier Sala-i-Martin, 1990. "Lecture Notes on Economic Growth(I): Introduction to the Literature and Neoclassical Models," NBER Working Papers 3563, National Bureau of Economic Research, Inc.
    18. Schilirò, Daniele, 2006. "Crescita economica, conoscenza e capitale umano. Le teorie e i modelli di crescita endogena di Paul Romer e Robert Lucas [Economic growth, knowledge and human capital. Theories and models of endoge," MPRA Paper 52435, University Library of Munich, Germany.
    19. Richard A. Brecher & Till Gross, 2019. "A minimum‐wage model of unemployment and growth: The case of a backward‐bending demand curve for labor," International Journal of Economic Theory, The International Society for Economic Theory, vol. 15(3), pages 297-309, September.
    20. repec:ebl:ecbull:v:2:y:2002:i:1:p:1-15 is not listed on IDEAS
    21. Gregory F. Nemet, 2006. "How well does Learning-by-doing Explain Cost Reductions in a Carbon-free Energy Technology?," Working Papers 2006.143, Fondazione Eni Enrico Mattei.

    More about this item

    Keywords

    Hybrid Model; Germany; Energy System; Domestic Mitigation;
    All these keywords.

    JEL classification:

    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2012.09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.