[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/fca/wpfnca/2000-07.html
   My bibliography  Save this paper

Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models

Author

Listed:
  • Steven Gonzalez
Abstract
In recent years, neural networks have received an increasing amount of attention among macroeconomic forecasters because of their potential to detect and reproduce linear and nonlinear relationships among a set of variables. This paper provides a highly accessible introduction to neural networks and establishes several parallels with standard econometric techniques. To facilitate the presentation, an empirical example is developed to forecast Canada's real GDP growth. For both the in-sample and out-of-sample periods, the forecasting accuracy of the neural network is found to be superior to a well-established linear regression model developed in the Department, with the error reduction ranging from 13 to 40 per cent. However, various tests indicate that there is little evidence that the improvement in forecasting accuracy is statistically significant. A thorough review of the literature suggests that neural networks are generally more accurate than linear models for out-of-sample forecasting of economic output and various financial variables such as stock prices. However, the literature should still be considered inconclusive due to the relatively small number of reliable studies on the topic. Despite these encouraging results, neural networks should not be viewed as a panacea, as this method also presents various weaknesses. Contrary to many researchers in the field, who tend to adopt an all-or-nothing approach to this issue, we argue that neural networks should be considered as a powerful complement to standard econometric methods, rather than a substitute. The full potential of neural networks can probably be exploited by using them in conjunction with linear regression models. Hence, neural networks should be viewed as an additional tool to be included in the toolbox of macroeconomic forecasters. Depuis quelques années, les prévisionnistes macro-économiques ont de plus en plus recours aux réseaux neuronaux en raison de leur capacité de repérer et de reproduire des relations linéaires et non linéaires dans un ensemble de variables. Le présent document se veut une introduction conviviale aux réseaux neuronaux, qui dresse des parallèles avec les techniques économétriques les plus répandues. Pour mieux illustrer nos propos, nous avons procédé à l’élaboration d’un exemple pratique sur les prévisions de croissance réelle du PIB au Canada. Qu’il s’agisse d’une période échantillonée ou non, on constatera que l’exactitude des prévisions du réseau neuronal est supérieur à celle du modèle de régression linéaire que le Ministère a élaboré et institué, avec diminution de la marge d’erreur, qui peut fluctuer entre 13 et 40 pour cent. Divers essais ont cependant permis d’établir que des prévisions plus exactes n’ont pas grande incidence sur le plan statistique. Une révision approfondie de la littérature nous a permis de conclure que les réseaux neuronaux sont dans l’ensemble plus exacts que les modèles linéraires pour la prévision des extrants économiques non échantillonés et pour certaines variables financières, tel le cours du marché. Cela dit, on ne saurait accorder une importance décisive à ce qui a été écrit en la matière, étant donné que les études fiables sont peu nombreuses pour le moment. Malgré des résultats encourageants, les réseaux neuronaux ne doivent pas être pris pour la panacée, car cette méthode présente également des faiblesses. Contrairement à nombre de chercheurs dans le domaine, qui ont tendance à adopter une approche absolutiste (soit tout, soit rien) à ce sujet, nous avançons que les réseaux neuronaux doivent être considérés comme un puissant complément aux méthodes économétriques en usage, plutôt que comme un substitut. Pour tirer le plus grand parti des réseaux neuronaux, il faudrait s’en servir en conjonction avec des modèles de régression linéaire. En somme, les réseaux neuronaux doivent être perçus comme un outil d’appoint à placer dans la boîte à outils des prévisionnistes macro-économiques.

Suggested Citation

  • Steven Gonzalez, "undated". "Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models," Working Papers-Department of Finance Canada 2000-07, Department of Finance Canada.
  • Handle: RePEc:fca:wpfnca:2000-07
    as

    Download full text from publisher

    File URL: http://www.fin.gc.ca/scripts/Publication_Request/request2_e.asp?doc=wp2000-07e.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Nazif Çatik & Mehmet Karaçuka, 2011. "A comparative analysis of alternative univariate time series models in forecasting Turkish inflation," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 13(2), pages 275-293, April.
    2. Haider, Adnan & Hanif, Muhammad Nadeem, 2007. "Inflation Forecasting in Pakistan using Artificial Neural Networks," MPRA Paper 14645, University Library of Munich, Germany.
    3. Virág, Miklós & Kristóf, Tamás, 2005. "Az első hazai csődmodell újraszámítása neurális hálók segítségével [Recalculation of the first Hungarian bankruptcy-prediction model using neural networks]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 144-162.
    4. Jagric Timotej, 2003. "A Nonlinear Approach to Forecasting with Leading Economic Indicators," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(2), pages 1-20, July.
    5. Hinterlang, Natascha, 2020. "Predicting monetary policy using artificial neural networks," Discussion Papers 44/2020, Deutsche Bundesbank.
    6. Dan Farhat, 2012. "Artificial Neural Networks and Aggregate Consumption Patterns in New Zealand," Working Papers 1205, University of Otago, Department of Economics, revised Dec 2012.
    7. Carla Salinas & Jon Mendieta, 2013. "Mitigation and adaptation investments for desertification and climate change: an assessment of the socioeconomic return," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(5), pages 659-672, June.
    8. Dan Farhat, 2014. "Artificial Neural Networks and Aggregate Consumption Patterns in New Zealand:," Working Papers 1404, University of Otago, Department of Economics, revised Mar 2014.
    9. Timotej Jagric, 2003. "Forecasting with leading economic indicators - a non-linear approach," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(1), pages 68-83.
    10. Nakamura, Emi, 2005. "Inflation forecasting using a neural network," Economics Letters, Elsevier, vol. 86(3), pages 373-378, March.
    11. Tlou Maggie Masenya, 2022. "Decolonization of Indigenous Knowledge Systems in South Africa: Impact of Policy and Protocols," International Journal of Knowledge Management (IJKM), IGI Global, vol. 18(1), pages 1-22, January.
    12. Hinterlang, Natascha, 2019. "Predicting Monetary Policy Using Artificial Neural Networks," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203503, Verein für Socialpolitik / German Economic Association.
    13. Timotej Jagric & Sebastjan Strasek, 2005. "A Nonlinear Extension Of The Nber Model For Short‐Run Forecasting Of Business Cycles," South African Journal of Economics, Economic Society of South Africa, vol. 73(3), pages 435-448, September.
    14. Dan Farhat, 2014. "Information Processing, Pattern Transmission and Aggregate Consumption Patterns in New Zealand:," Working Papers 1405, University of Otago, Department of Economics, revised Mar 2014.
    15. Ana Maria Mihaela Iordache & Codruța Cornelia Dura & Cristina Coculescu & Claudia Isac & Ana Preda, 2021. "Using Neural Networks in Order to Analyze Telework Adaptability across the European Union Countries: A Case Study of the Most Relevant Scenarios to Occur in Romania," IJERPH, MDPI, vol. 18(20), pages 1-28, October.
    16. María Clara Aristizábal Restrepo, 2006. "Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia," Borradores de Economia 377, Banco de la Republica de Colombia.
    17. Ahmed Ramzy Mohamed, 2022. "Artificial Neural Network for Modeling the Economic Performance: A New Perspective," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(3), pages 555-575, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fca:wpfnca:2000-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gustavo Durango (email available below). General contact details of provider: https://edirc.repec.org/data/fingvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.