[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/erp/euirsc/p0292.html
   My bibliography  Save this paper

Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

Author

Listed:
  • Paul L. Joskow
Abstract
Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard lifecycle cost metric utilized is the levelized cost per MWh supplied. This paper demonstrates that this metric is inappropriate for comparing intermittent generating technologies like wind and solar with dispatchable generating technologies like nuclear, gas combined cycle, and coal. Levelized cost comparisons are a misleading metric for comparing intermittent and dispatchable generating technologies because they fail to take into account differences in the production profiles of intermittent and dispatchable generating technologies and the associated large variations in the market value of the electricity they supply. Levelized cost comparisons overvalue intermittent generating technologies compared to dispatchable base load generating technologies. These comparisons also typically overvalue wind generating technologies compared to solar generating technologies. Integrating differences in production profiles, the associated variations in the market value of the electricity at the times it is supplied, and the expected life-cycle costs associated with different generating technologies is necessary to provide meaningful economic comparisons between them. This market-based framework also has implications for the appropriate design of procurement auctions created to implement renewable energy procurement mandates, the efficient structure of production tax credits for renewable energy, incentives for and the evaluation of electricity storage technologies and the evaluation of the additional costs of integrating intermittent generation into electric power networks.

Suggested Citation

  • Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," EUI-RSCAS Working Papers 45, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
  • Handle: RePEc:erp:euirsc:p0292
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1814/18239
    File Function: Full text
    Download Restriction: no

    File URL: http://cadmus.eui.eu/bitstream/handle/1814/18239/RSCAS_2011_45.pdf?sequence=1
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    2. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    2. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    3. Marques, António Cardoso & Fuinhas, José Alberto & Neves, Sónia Almeida, 2018. "Ordinary and Special Regimes of electricity generation in Spain: How they interact with economic activity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1226-1240.
    4. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    5. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    6. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    7. Lamadrid, Alberto J. & Mount, Tim, 2012. "Ancillary services in systems with high penetrations of renewable energy sources, the case of ramping," Energy Economics, Elsevier, vol. 34(6), pages 1959-1971.
    8. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    9. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    10. Stephan Nagl & Michaela Fürsch & Dietmar Lindenberger, 2013. "The Costs of Electricity Systems with a High Share of Fluctuating Renewables: A Stochastic Investment and Dispatch Optimization Model for Europe," The Energy Journal, , vol. 34(4), pages 151-180, October.
    11. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    12. Linnell, Peter, 2010. "Are Smaller Turbines the Way Forward for Wind Energy in Herefordshire?," MPRA Paper 58879, University Library of Munich, Germany.
    13. de Medeiros, Armando Lúcio Ramos & Araújo, Alex Maurício & de Oliveira Filho, Oyama Douglas Queiroz & Rohatgi, Janardan & dos Santos, Maurílio José, 2015. "Analysis of design parameters of large-sized wind turbines by non-dimensional model," Energy, Elsevier, vol. 93(P1), pages 1146-1154.
    14. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    15. Chen, Yihsu & Zhang, Duan & Takashima, Ryuta, 2019. "Carbon emission forensic in the energy sector: Is it worth the effort?," Energy Policy, Elsevier, vol. 128(C), pages 868-878.
    16. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    17. Chattopadhyay, Deb, 2014. "Modelling renewable energy impact on the electricity market in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 9-22.
    18. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    19. Timothy Considine & Edward Manderson, 2013. "Balancing Fiscal, Energy, and Environmental Concerns: Analyzing the Policy Options for California’s Energy and Economic Future," Energies, MDPI, vol. 6(3), pages 1-32, March.
    20. Sónia Almeida Neves & António Cardoso Marques & José Alberto Fuinhas, 2018. "Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 23-40, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erp:euirsc:p0292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valerio PAPPALARDO (email available below). General contact details of provider: https://edirc.repec.org/data/rsiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.