[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/esx/essedp/8838.html
   My bibliography  Save this paper

Exact Local Whittle Estimation of Fractional Integration

Author

Listed:
  • Shimotsu, Katsumi
  • Phillips, Peter C B
Abstract
An exact form of the local Whittle likelihood is studied with the intent of developing a general purpose estimation procedure for the memory parameter (d) that applies throughout the stationary and nonstationary regions of d and which does not rely on tapering or differencing prefilters. The resulting exact local Whittle estimator is shown to be consistent and to have the same N(0, 1/4)limit distribution for all values of d.

Suggested Citation

  • Shimotsu, Katsumi & Phillips, Peter C B, 2002. "Exact Local Whittle Estimation of Fractional Integration," Economics Discussion Papers 8838, University of Essex, Department of Economics.
  • Handle: RePEc:esx:essedp:8838
    as

    Download full text from publisher

    File URL: https://repository.essex.ac.uk/8838/
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C.B. Phillips, 1999. "Discrete Fourier Transforms of Fractional Processes," Cowles Foundation Discussion Papers 1243, Cowles Foundation for Research in Economics, Yale University.
    2. Hansen, Bruce E., 1996. "Stochastic Equicontinuity for Unbounded Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 12(2), pages 347-359, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    2. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    3. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    4. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    5. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    6. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    7. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    8. Dominique Guegan & Zhiping Lu & Beijia Zhu, 2012. "Comparaison of Several Estimation Procedures for Long Term Behavior," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00673934, HAL.
    9. Morana, Claudio, 2007. "Multivariate modelling of long memory processes with common components," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 919-934, October.
    10. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    11. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    12. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
    13. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    14. Esposti, Roberto, 2017. "What Makes Commodity Prices Move Together? An Answer From A Dynamic Factor Model," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260889, European Association of Agricultural Economists.
    15. Peter C. B. Phillips, 2005. "Econometric Analysis of Fisher's Equation," American Journal of Economics and Sociology, Wiley Blackwell, vol. 64(1), pages 125-168, January.
    16. Odendahl, Florens & Rossi, Barbara & Sekhposyan, Tatevik, 2023. "Evaluating forecast performance with state dependence," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Manuel Monge & Ana Lazcano, 2022. "Commodity Prices after COVID-19: Persistence and Time Trends," Risks, MDPI, vol. 10(6), pages 1-20, June.
    18. Coleman, Simeon, 2012. "Where Does the Axe Fall? Inflation Dynamics and Poverty Rates: Regional and Sectoral Evidence for Ghana," World Development, Elsevier, vol. 40(12), pages 2454-2467.
    19. Zhenlin Yang & Liangjun Su, 2007. "Instrumental Variable Quantile Estimation of Spatial Autoregressive Models," Working Papers 05-2007, Singapore Management University, School of Economics.
    20. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.

    More about this item

    Keywords

    Discrete Fourier transform; fractional integration; long memory; nonstationarity; semiparametric estimation; Whittle likelihood.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esx:essedp:8838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Essex Economics Web Manager (email available below). General contact details of provider: https://edirc.repec.org/data/edessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.