Techno-economic study of output-flexible light water nuclear reactor systems with cryogenic energy storage
Author
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
Other versions of this item:
- Wilson, A. & Nuttall, W. & Glowacki, B., 2020. "Techno-economic study of output-flexible light water nuclear reactor systems with cryogenic energy storage," Cambridge Working Papers in Economics 2001, Faculty of Economics, University of Cambridge.
References listed on IDEAS
- Li, Yongliang & Cao, Hui & Wang, Shuhao & Jin, Yi & Li, Dacheng & Wang, Xiang & Ding, Yulong, 2014. "Load shifting of nuclear power plants using cryogenic energy storage technology," Applied Energy, Elsevier, vol. 113(C), pages 1710-1716.
- Malischek, Raimund & Trüby, Johannes, 2016.
"The future of nuclear power in France: an analysis of the costs of phasing-out,"
Energy, Elsevier, vol. 116(P1), pages 908-921.
- Malischek, Raimund & Trueby, Johannes, 2014. "The Future of Nuclear Power in France: An Analysis of the Costs of Phasing-out," EWI Working Papers 2014-15, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
- Wild, Phillip, 2017. "Determining commercially viable two-way and one-way ‘Contract-for-Difference’ strike prices and revenue receipts," Energy Policy, Elsevier, vol. 110(C), pages 191-201.
- Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
- Peng, Xiaodong & She, Xiaohui & Cong, Lin & Zhang, Tongtong & Li, Chuan & Li, Yongliang & Wang, Li & Tong, Lige & Ding, Yulong, 2018. "Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage," Applied Energy, Elsevier, vol. 221(C), pages 86-99.
- Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Sarah Hamdy & Francisco Moser & Tatiana Morosuk & George Tsatsaronis, 2019. "Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage," Energies, MDPI, vol. 12(3), pages 1-19, February.
- Aliaga, D.M. & Romero, C.P. & Feick, R. & Brooks, W.K. & Campbell, A.N., 2024. "Modelling and simulation of a novel liquid air energy storage system with a liquid piston, NH3 and CO2 cycles for enhanced heat and cold utilisation," Applied Energy, Elsevier, vol. 362(C).
- Wang, Chen & Akkurt, Nevzat & Zhang, Xiaosong & Luo, Yimo & She, Xiaohui, 2020. "Techno-economic analyses of multi-functional liquid air energy storage for power generation, oxygen production and heating," Applied Energy, Elsevier, vol. 275(C).
- Ayah Marwan Rabi & Jovana Radulovic & James M. Buick, 2023. "Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies," Energies, MDPI, vol. 16(17), pages 1-19, August.
- Tafone, Alessio & Romagnoli, Alessandro & Borri, Emiliano & Comodi, Gabriele, 2019. "New parametric performance maps for a novel sizing and selection methodology of a Liquid Air Energy Storage system," Applied Energy, Elsevier, vol. 250(C), pages 1641-1656.
- Peng, Xiaodong & She, Xiaohui & Li, Chuan & Luo, Yimo & Zhang, Tongtong & Li, Yongliang & Ding, Yulong, 2019. "Liquid air energy storage flexibly coupled with LNG regasification for improving air liquefaction," Applied Energy, Elsevier, vol. 250(C), pages 1190-1201.
- O'Callaghan, O. & Donnellan, P., 2021. "Liquid air energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Chaitanya, Vuppanapalli & Narasimhan, S. & Venkatarathnam, G., 2023. "Optimization of a Solvay cycle-based liquid air energy storage system," Energy, Elsevier, vol. 283(C).
- She, Xiaohui & Zhang, Tongtong & Cong, Lin & Peng, Xiaodong & Li, Chuan & Luo, Yimo & Ding, Yulong, 2019. "Flexible integration of liquid air energy storage with liquefied natural gas regasification for power generation enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Osorio, Julian D. & Panwar, Mayank & Rivera-Alvarez, Alejandro & Chryssostomidis, Chrys & Hovsapian, Rob & Mohanpurkar, Manish & Chanda, Sayonsom & Williams, Herbert, 2020. "Enabling thermal efficiency improvement and waste heat recovery using liquid air harnessed from offshore renewable energy sources," Applied Energy, Elsevier, vol. 275(C).
- Wang, Chen & Zhang, Xiaosong & You, Zhanping & Zhang, Muxing & Huang, Shifang & She, Xiaohui, 2021. "The effect of air purification on liquid air energy storage – An analysis from molecular to systematic modelling," Applied Energy, Elsevier, vol. 300(C).
- He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
- Vecchi, Andrea & Li, Yongliang & Mancarella, Pierluigi & Sciacovelli, Adriano, 2020. "Integrated techno-economic assessment of Liquid Air Energy Storage (LAES) under off-design conditions: Links between provision of market services and thermodynamic performance," Applied Energy, Elsevier, vol. 262(C).
- Mylena Vieira Pinto Menezes & Icaro Figueiredo Vilasboas & Julio Augusto Mendes da Silva, 2022. "Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)," Energies, MDPI, vol. 15(8), pages 1-16, April.
- Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
- Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
- Lin, Boqiang & Wu, Wei & Bai, Mengqi & Xie, Chunping & Radcliffe, Jonathan, 2019. "Liquid air energy storage: Price arbitrage operations and sizing optimization in the GB real-time electricity market," Energy Economics, Elsevier, vol. 78(C), pages 647-655.
- Cetegen, Shaylin A. & Gundersen, Truls & Barton, Paul I., 2024. "Evaluating economic feasibility of liquid air energy storage systems in US and European markets," Energy, Elsevier, vol. 300(C).
More about this item
Keywords
uncertainty analysis; power grid economics; energy storage; nuclear power;All these keywords.
JEL classification:
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2020-07-13 (Energy Economics)
- NEP-ORE-2020-07-13 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg2001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.