[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ems/eureri/1611.html
   My bibliography  Save this paper

Introduction to Convex and Quasiconvex Analysis

Author

Listed:
  • Frenk, J.B.G.
  • Kassay, G.
Abstract
In the first chapter of this book the basic results within convex and quasiconvex analysis are presented. In Section 2 we consider in detail the algebraic and topological properties of convex sets within Rn together with their primal and dual representations. In Section 3 we apply the results for convex sets to convex and quasiconvex functions and show how these results can be used to give primal and dual representations of the functions considered in this field. As such, most of the results are well-known with the exception of Subsection 3.4 dealing with dual representations of quasiconvex functions. In Section 3 we consider applications of convex analysis to noncooperative game and minimax theory, Lagrangian duality in optimization and the properties of positively homogeneous evenly quasiconvex functions. Among these result an elementary proof of the well-known Sion’s minimax theorem concerningquasiconvex-quasiconcave bifunctions is presented, thereby avoiding the less elementary fixed point arguments. Most of the results are proved in detail and the authors have tried to make these proofs as transparent as possible. Remember that convex analysis deals with the study of convex cones and convex sets and these objects are generalizations of linear subspaces and affine sets, thereby extending the field of linear algebra. Although some of the proofs are technical, it is possible to give a clear geometrical interpretation of the main ideas of convex analysis. Finally in Section 5 we list a short and probably incomplete overview on the history of convex and quasiconvex analysis.

Suggested Citation

  • Frenk, J.B.G. & Kassay, G., 2004. "Introduction to Convex and Quasiconvex Analysis," ERIM Report Series Research in Management ERS-2004-075-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  • Handle: RePEc:ems:eureri:1611
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1611/ERS%202004%20075%20LIS.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frenk, J.B.G. & Kassay, G. & Protassov, V., 2002. "On Borel Probability Measures and Noncooperative Game Theory," ERIM Report Series Research in Management ERS-2002-85-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. J. B. G. Frenk & G. Kassay, 1999. "On Classes of Generalized Convex Functions, Gordan–Farkas Type Theorems, and Lagrangian Duality," Journal of Optimization Theory and Applications, Springer, vol. 102(2), pages 315-343, August.
    3. Frenk, J.B.G. & Kassay, G. & Protassov, V., 2002. "On Borel Probability Measures and Noncooperative Game Theory," Econometric Institute Research Papers ERS-2002-85-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Elmor Peterson, 2001. "The Fundamental Relations between Geometric Programming Duality, Parametric Programming Duality, and Ordinary Lagrangian Duality," Annals of Operations Research, Springer, vol. 105(1), pages 109-153, July.
    5. J. P. Crouzeix, 1980. "Conditions for Convexity of Quasiconvex Functions," Mathematics of Operations Research, INFORMS, vol. 5(1), pages 120-125, February.
    6. Jean-Paul Penot & Michel Volle, 1990. "On Quasi-Convex Duality," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 597-625, November.
    7. J.B.G. Frenk & G. Kassay & V. Protassov, 2002. "On Borel Probability Measures and Noncooperative Game Theory," Tinbergen Institute Discussion Papers 02-093/4, Tinbergen Institute.
    8. Frenk, J. B. G. & Kassay, G. & Kolumban, J., 2004. "On equivalent results in minimax theory," European Journal of Operational Research, Elsevier, vol. 157(1), pages 46-58, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frenk, J.B.G. & Still, G.J., 2005. "A Note on the Dual of an Unconstrained (Generalized) Geometric Programming Problem," ERIM Report Series Research in Management ERS-2005-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frenk, J.B.G. & Kas, P. & Kassay, G., 2004. "On linear programming duality and necessary and sufficient conditions in minimax theory," Econometric Institute Research Papers EI 2004-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Frenk, J.B.G. & Kassay, G., 2005. "Lagrangian duality and cone convexlike functions," ERIM Report Series Research in Management ERS-2005-019-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci & Luigi Montrucchio, 2011. "Complete Monotone Quasiconcave Duality," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 321-339, May.
    4. Simone Cerreia-Vioglio & Fabio Maccheroni & Massimo Marinacci, 2015. "On the equality of Clarke-Rockafellar and Greenberg-Pierskalla differentials for monotone and quasiconcave functionals," Working Papers 561, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    6. J. B. G. Frenk & G. Kassay, 2007. "Lagrangian Duality and Cone Convexlike Functions," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 207-222, August.
    7. J. B. G. Frenk & P. Kas & G. Kassay, 2007. "On Linear Programming Duality and Necessary and Sufficient Conditions in Minimax Theory," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 423-439, March.
    8. Liu, Shiang-Tai, 2006. "Posynomial geometric programming with parametric uncertainty," European Journal of Operational Research, Elsevier, vol. 168(2), pages 345-353, January.
    9. Maria C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2016. "On the Fritz John saddle point problem for differentiable multiobjective optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 917-933, December.
    10. Radu Boţ & Sorin-Mihai Grad & Gert Wanka, 2007. "A general approach for studying duality in multiobjective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 417-444, June.
    11. Satoshi Suzuki & Daishi Kuroiwa, 2011. "On Set Containment Characterization and Constraint Qualification for Quasiconvex Programming," Journal of Optimization Theory and Applications, Springer, vol. 149(3), pages 554-563, June.
    12. Fabián Flores-Bazán & William Echegaray & Fernando Flores-Bazán & Eladio Ocaña, 2017. "Primal or dual strong-duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap," Journal of Global Optimization, Springer, vol. 69(4), pages 823-845, December.
    13. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    14. Rashed Khanjani Shiraz & Madjid Tavana & Debora Di Caprio & Hirofumi Fukuyama, 2016. "Solving Geometric Programming Problems with Normal, Linear and Zigzag Uncertainty Distributions," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 243-265, July.
    15. Frenk, J.B.G. & Schaible, S., 2004. "Fractional Programming," ERIM Report Series Research in Management ERS-2004-074-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Jean-Pierre Crouzeix, 2022. "On Quasiconvex Functions Which are Convexifiable or Not," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 66-80, June.
    17. Jean-Paul Penot, 2010. "Are dualities appropriate for duality theories in optimization?," Journal of Global Optimization, Springer, vol. 47(3), pages 503-525, July.
    18. Frenk, J.B.G. & Kassay, G., 2006. "On noncooperative games, minimax theorems and equilibrium problems," Econometric Institute Research Papers EI 2006-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Mingchao Xia & Qingying Lai & Yajiao Zhong & Canbing Li & Hsiao-Dong Chiang, 2016. "Aggregator-Based Interactive Charging Management System for Electric Vehicle Charging," Energies, MDPI, vol. 9(3), pages 1-14, March.
    20. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.

    More about this item

    Keywords

    convex analysis; lagrangian dual; minimax theorems; noncooperative games; optimalisatie; optimization theory; quasiconvex analysis;
    All these keywords.

    JEL classification:

    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureri:1611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/erimanl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.