[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1667.html
   My bibliography  Save this paper

Constructing seasonally adjusted data with time-varying confidence intervals

Author

Listed:
  • Koopman, S.J.
  • Franses, Ph.H.B.F.
Abstract
Seasonal adjustment methods transform observed time series data into estimated data, where these estimated data are constructed such that they show no or almost no seasonal variation. An advantage of model-based methods is that these can provide confidence intervals around the seasonally adjusted data. One particularly useful time series model for seasonal adjustment is the basic structural time series [BSM] model. The usual premise of the BSM is that the variance of each of the components is constant. In this paper we address the possibility that the variance of the trend component in a macro-economic time series in some way depends on the business cycle. One reason for doing so is that one can expect that there is more uncertainty in recession periods. We extend the BSM by allowing for a business-cycle dependent variance in the level equation. Next we show how this affects the confidence intervals of seasonally adjusted data. We apply our extended BSM to monthly US unemployment and we show that the estimated confidence intervals for seasonally adjusted unemployment change with past changes in the oil price.

Suggested Citation

  • Koopman, S.J. & Franses, Ph.H.B.F., 2001. "Constructing seasonally adjusted data with time-varying confidence intervals," Econometric Institute Research Papers EI 2001-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1667
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1667/feweco20010129160415.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Franses, Philip Hans, 1995. "Quarterly US Unemployment: Cycles, Seasons and Asymmetries," Empirical Economics, Springer, vol. 20(4), pages 717-725.
    2. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    3. Ooms, Marius & Franses, Philip Hans, 1997. "On Periodic Correlations between Estimated Seasonal and Nonseasonal Components in German and U.S. Unemployment," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 470-481, October.
    4. Canova, Fabio & Ghysels, Eric, 1994. "Changes in seasonal patterns : Are they cyclical?," Journal of Economic Dynamics and Control, Elsevier, vol. 18(6), pages 1143-1171, November.
    5. Harvey, Andrew & Koopman, Siem Jan & Riani, Marco, 1997. "The Modeling and Seasonal Adjustment of Weekly Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 354-368, July.
    6. Burridge, Peter & Wallis, Kenneth F, 1984. "Calculating the Variance of Seasonally Adjusted Series," The Warwick Economics Research Paper Series (TWERPS) 251, University of Warwick, Department of Economics.
    7. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    8. Luginbuhl, Rob & de Vos, Aart, 1999. "Bayesian Analysis of an Unobserved-Component Time Series Model of GDP with Markov-Switching and Time-Varying Growths," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 456-465, October.
    9. Jaditz, Ted, 2000. "Seasonality in Variance Is Common in Macro Time Series," The Journal of Business, University of Chicago Press, vol. 73(2), pages 245-254, April.
    10. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-389, October.
    11. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    12. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    13. Agustín Maravall, 1996. "Unobserved Components in Economic Time Series," Working Papers 9609, Banco de España.
    14. Gabriele Fiorentini & Agustín Maravall, 1995. "Unobserved Components in ARCH Models: An Application to Seasonal Adjustment," Working Papers wp1995_9509, CEMFI.
    15. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gatfaoui, Jamel & Girardin, Eric, 2015. "Comovement of Chinese provincial business cycles," Economic Modelling, Elsevier, vol. 44(C), pages 294-306.
    2. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    3. Gebhard Flaig, 2003. "Time Series Properties of the German Monthly Production Index," CESifo Working Paper Series 833, CESifo.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448, September.
    2. Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.
    3. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, September.
    4. Paul Labonne & Martin Weale, 2018. "Temporal disaggregation of overlapping noisy quarterly data using state space models: Estimation of monthly business sector output from Value Added Tax data in the UK," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-18, Economic Statistics Centre of Excellence (ESCoE).
    5. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    6. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
    7. Dalibor Stevanovic & Stéphane Surprenant & Rachidi Kotchoni, 2019. "Identification des points de retournement du cycle économique au Canada," CIRANO Project Reports 2019rp-05, CIRANO.
    8. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    9. Antonio Matas-Mir & Denise R. Osborn & Marco J. Lombardi, 2008. "The effect of seasonal adjustment on the properties of business cycle regimes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 257-278.
    10. Djuranovik, Leslie, 2014. "The Indonesian macroeconomy and the yield curve: A dynamic latent factor approach," Journal of Asian Economics, Elsevier, vol. 34(C), pages 1-15.
    11. Giancarlo Bruno & Edoardo Otranto, 2006. "The choice of time interval in seasonal adjustment: A heuristic approach," Statistical Papers, Springer, vol. 47(3), pages 393-417, June.
    12. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    13. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    14. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    15. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    16. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    17. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    18. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    19. Michael ARTIS & Massimiliano MARCELLINO & Tommaso PROIETTI, 2002. "Dating the Euro Area Business Cycle," Economics Working Papers ECO2002/24, European University Institute.
    20. Yasutomo Murasawa & Roberto S. Mariano, 2004. "Constructing a Coincident Index of Business Cycles Without Assuming a One-Factor Model," Econometric Society 2004 Far Eastern Meetings 710, Econometric Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.