[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/els/esrcls/037.html
   My bibliography  Save this paper

Naive Reinforcement Learning With Endogenous Aspiration

Author

Listed:
  • Tilman Börgers
  • Rajiv Sarin
Abstract
This risk.paper considers a simple learning process for decision problems under All behaviour change derives from the reinforcing or deterring effect of instantaneous payoff experiences. Payoff experiences are reinforcing or deterring depending on whether the payoff exceeds an aspiration level or falls short of it. The aspiration level is endogenous. Over time it is adjusted into the direction of the actually experienced payoff. This paper shows that realistic aspiration level adjustments may improve the decision maker's long run per-formance, because they may prevent him from feeling dissatisfied with even the best of the available strategies. On the other hand, the paper also shows that in a large class of decision problems endogenous aspiration levels lead to persistent deviations from expected payoff maximisation because they create "probability matching" effects.

Suggested Citation

  • Tilman Börgers & Rajiv Sarin, "undated". "Naive Reinforcement Learning With Endogenous Aspiration," ELSE working papers 037, ESRC Centre on Economics Learning and Social Evolution.
  • Handle: RePEc:els:esrcls:037
    as

    Download full text from publisher

    File URL: ftp://ftp.repec.org/RePEc/els/esrcls/naive.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Karandikar, Rajeeva & Mookherjee, Dilip & Ray, Debraj & Vega-Redondo, Fernando, 1998. "Evolving Aspirations and Cooperation," Journal of Economic Theory, Elsevier, vol. 80(2), pages 292-331, June.
    2. Gilboa, Itzhak & Schmeidler, David, 1996. "Case-Based Optimization," Games and Economic Behavior, Elsevier, vol. 15(1), pages 1-26, July.
    3. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    4. Bendor, J. & Mookherjee, D. & Ray, D., 1994. "Aspirations, adaptive learning and cooperation in repeated games," Discussion Paper 1994-42, Tilburg University, Center for Economic Research.
    5. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(2), pages 239-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Dziubinski & Jaideep Roy, 2007. "Endogenous Selection of Aspiring and Rational rules in Coordination Games," CEDI Discussion Paper Series 07-14, Centre for Economic Development and Institutions(CEDI), Brunel University.
    2. de Vries, F.P., 1999. "The Behavioral Firm and Its Internal Game : Evolutionary Dynamics of Decision Making," Other publications TiSEM 81ac857a-7637-49d8-a52e-3, Tilburg University, School of Economics and Management.
    3. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    4. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.
    5. Segismundo S. Izquierdo & Luis R. Izquierdo & Nicholas M. Gotts, 2008. "Reinforcement Learning Dynamics in Social Dilemmas," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(2), pages 1-1.
    6. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
    7. Napel, Stefan, 2003. "Aspiration adaptation in the ultimatum minigame," Games and Economic Behavior, Elsevier, vol. 43(1), pages 86-106, April.
    8. Atanasios Mitropoulos, 2001. "Little Information, Efficiency, and Learning - An Experimental Study," Game Theory and Information 0110002, University Library of Munich, Germany.
    9. Tone Dieckmann, 1998. "Stochastic Learning and the Evolution of Conventions," Constitutional Political Economy, Springer, vol. 9(3), pages 187-212, September.
    10. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    11. Osili, Una Okonkwo & Paulson, Anna, 2014. "Crises and confidence: Systemic banking crises and depositor behavior," Journal of Financial Economics, Elsevier, vol. 111(3), pages 646-660.
    12. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    13. Walter Gutjahr, 2006. "Interaction dynamics of two reinforcement learners," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(1), pages 59-86, February.
    14. Ponti, Giovanni, 2000. "Continuous-time evolutionary dynamics: theory and practice," Research in Economics, Elsevier, vol. 54(2), pages 187-214, June.
    15. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    16. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    17. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    18. Pape, Andreas Duus & Kurtz, Kenneth J., 2013. "Evaluating case-based decision theory: Predicting empirical patterns of human classification learning," Games and Economic Behavior, Elsevier, vol. 82(C), pages 52-65.
    19. Innocenti, Stefania & Cowan, Robin, 2019. "Self-efficacy beliefs and imitation: A two-armed bandit experiment," European Economic Review, Elsevier, vol. 113(C), pages 156-172.
    20. Shu-Heng Chen & Yi-Lin Hsieh, 2011. "Reinforcement Learning in Experimental Asset Markets," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(1), pages 109-133.

    More about this item

    Keywords

    Learning; Evolution; Search; Price Dispersion.;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:els:esrcls:037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: s. malkani (email available below). General contact details of provider: https://edirc.repec.org/data/elucluk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.