[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/eea/boewps/wp2006-03.html
   My bibliography  Save this paper

Forecasting measures of inflation for the Estonian economy

Author

Listed:
  • Agostino Consolo
Abstract
The aim of this paper is to forecast some of the most important measures of inflation of the Estonian economy by making use of linear and non-linear models. Results from comparing classes of optimal models are similar to those in the forecasting literature. In particular, there are gains from using more sophisticated methods such as factor analysis and time-varying parameters methods. Model discrimination is based on evaluation criteria which are computed by a real-time dynamic estimation procedure. Moreover, forecasts uncertainty is appropriately taken into account: Fan Charts can exhaustively describe the final output for what concerns out-of-sample forecasting.

Suggested Citation

  • Agostino Consolo, 2006. "Forecasting measures of inflation for the Estonian economy," Bank of Estonia Working Papers 2006-03, Bank of Estonia, revised 12 Nov 2006.
  • Handle: RePEc:eea:boewps:wp2006-03
    as

    Download full text from publisher

    File URL: http://www.eestipank.ee/sites/eestipank.ee/files/publication/en/WorkingPapers/2006/_wp_306.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazimi, Camilla & Brownstone, David, 1999. "Bootstrap confidence bands for shrinkage estimators," Journal of Econometrics, Elsevier, vol. 90(1), pages 99-127, May.
    2. Robert J. Gordon, 1997. "The Time-Varying NAIRU and Its Implications for Economic Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 11-32, Winter.
    3. Stephen G. Cecchetti & Rita S. Chu & Charles Steindel, 2000. "The unreliability of inflation indicators," Current Issues in Economics and Finance, Federal Reserve Bank of New York, vol. 6(Apr).
    4. Massimiliano Marcellino, "undated". "Instability and non-linearity in the EMU," Working Papers 211, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    6. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 26(Q I), pages 32-44.
    7. Kevin J. Lansing, 2002. "Can the Phillips curve help forecast inflation?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue oct4.
    8. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    9. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    10. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    2. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    3. Tito Nícias Teixeira da Silva Filho, 2008. "Buscando la tasa natural de desempleo en una economía expuesta a grandes choques de precios relativos: el caso de Brasil," Investigación Conjunta-Joint Research, in: Centro de Estudios Monetarios Latinoamericanos (CEMLA) (ed.), Estimación y Uso de Variables no Observables en la Región, edition 1, volume 1, chapter 14, pages 426-464, Centro de Estudios Monetarios Latinoamericanos, CEMLA.
    4. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    5. Canova, Fabio, 2002. "G-7 Inflation Forecasts," CEPR Discussion Papers 3283, C.E.P.R. Discussion Papers.
    6. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    7. Tito Nícias Teixeira da Silva Filho, 2008. "La tasa natural de desempleo en Brasil, Chile, Colombia y Venezuela: algunos resultados y desafíos," Investigación Conjunta-Joint Research, in: Centro de Estudios Monetarios Latinoamericanos (CEMLA) (ed.), Estimación y Uso de Variables no Observables en la Región, edition 1, volume 1, chapter 13, pages 399-425, Centro de Estudios Monetarios Latinoamericanos, CEMLA.
    8. Canova, Fabio, 2002. "G-7 Inflation Forecasts," CEPR Discussion Papers 3283, C.E.P.R. Discussion Papers.
    9. Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.
    10. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    11. G. Ascari & E. Marrocu, 2003. "Forecasting inflation: a comparison of linear Phillips curve models and nonlinear time serie models," Working Paper CRENoS 200307, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    12. Jing Tian & Heather M. Anderson, 2011. "Forecasting Under Strucural Break Uncertainty," Monash Econometrics and Business Statistics Working Papers 8/11, Monash University, Department of Econometrics and Business Statistics.
    13. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    14. Mr. Angel J. Ubide & Mr. Kevin Ross, 2001. "Mind the Gap: What is the Best Measure of Slack in the Euro Area?," IMF Working Papers 2001/203, International Monetary Fund.
    15. Dandan Liu & Dennis Jansen, 2011. "Does a factor Phillips curve help? An evaluation of the predictive power for U.S. inflation," Empirical Economics, Springer, vol. 40(3), pages 807-826, May.
    16. Mazumder, Sandeep, 2011. "Cost-based Phillips Curve forecasts of inflation," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 553-567.
    17. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    18. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    19. Jonas D. M. Fisher & Chin Te Liu & Ruilin Zhou, 2002. "When can we forecast inflation?," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 26(Q I), pages 32-44.
    20. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.

    More about this item

    Keywords

    Estonian Economy; forecasting; inflation modelling;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eea:boewps:wp2006-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peeter Luikmel (email available below). General contact details of provider: https://edirc.repec.org/data/epgovee.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.