[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2020-90.html
   My bibliography  Save this paper

Bayesian state space models in macroeconometrics

Author

Listed:
  • Joshua C.C. Chan
  • Rodney W. Strachan
Abstract
State space models play an important role in macroeconometric analysis and the Bayesian approach has been shown to have many advantages. This paper outlines recent developments in state space modelling applied to macroeconomics using Bayesian methods. We outline the directions of recent research, specifically the problems being addressed and the solutions proposed. After presenting a general form for the linear Gaussian model, we discuss the interpretations and virtues of alternative estimation routines and their outputs. This discussion includes the Kalman filter and smoother, and precision based algorithms. As the advantages of using large models have become better understood, a focus has developed on dimension reduction and computational advances to cope with high-dimensional parameter spaces. We give an overview of a number of recent advances in these directions. Many models suggested by economic theory are either non-linear or non-Gaussian, or both. We discuss work on the particle filtering approach to such models as well as other techniques that use various approximations - to either the time t state and measurement equations or to the full posterior for the states - to obtain draws.

Suggested Citation

  • Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2020-90
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2020-10/90_2020_chan_strachan_0.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436, June.
    2. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    3. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    4. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2016. "A Bounded Model of Time Variation in Trend Inflation, Nairu and the Phillips Curve," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 551-565, April.
    5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    6. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    7. Grant, Angelia L. & Chan, Joshua C.C., 2017. "Reconciling output gaps: Unobserved components model and Hodrick–Prescott filter," Journal of Economic Dynamics and Control, Elsevier, vol. 75(C), pages 114-121.
    8. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    9. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    10. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
    11. Eric Eisenstat & Rodney W. Strachan, 2016. "Modelling Inflation Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(5), pages 805-820, August.
    12. Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014. "Hierarchical Shrinkage in Time‐Varying Parameter Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
    13. Carriero, A. & Kapetanios, G. & Marcellino, M., 2009. "Forecasting exchange rates with a large Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
    14. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    15. Sylvia FrüHwirth-Schnatter & Helga Wagner, 2006. "Auxiliary mixture sampling for parameter-driven models of time series of counts with applications to state space modelling," Biometrika, Biometrika Trust, vol. 93(4), pages 827-841, December.
    16. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    17. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    18. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    19. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    20. Dimitris Korobilis, 2013. "Assessing the Transmission of Monetary Policy Using Time-varying Parameter Dynamic Factor Models-super-," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 157-179, April.
    21. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    22. Stefanos Dimitrakopoulos & Michalis Kolossiatis, 2020. "Bayesian analysis of moving average stochastic volatility models: modeling in-mean effects and leverage for financial time series," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 319-343, April.
    23. repec:hal:journl:peer-00732535 is not listed on IDEAS
    24. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013. "A New Model of Trend Inflation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
    25. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Measuring Uncertainty and Its Impact on the Economy," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 799-815, December.
    26. Florian Huber & Gary Koop & Luca Onorante, 2021. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
    27. Thomas A. Lubik & Christian Matthes, 2015. "Time-Varying Parameter Vector Autoregressions: Specification, Estimation, and an Application," Economic Quarterly, Federal Reserve Bank of Richmond, issue 4Q, pages 323-352.
    28. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    29. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2010. "Dynamic Probabilities of Restrictions in State Space Models: An Application to the Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 370-379.
    30. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    31. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    32. Morley, James C., 2002. "A state-space approach to calculating the Beveridge-Nelson decomposition," Economics Letters, Elsevier, vol. 75(1), pages 123-127, March.
    33. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    34. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    35. Morley, James C., 2011. "The Two Interpretations Of The Beveridge–Nelson Decomposition," Macroeconomic Dynamics, Cambridge University Press, vol. 15(3), pages 419-439, June.
    36. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    37. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    38. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    39. Watson, Mark W., 1986. "Univariate detrending methods with stochastic trends," Journal of Monetary Economics, Elsevier, vol. 18(1), pages 49-75, July.
    40. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    41. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    42. Kulish, Mariano & Morley, James & Robinson, Tim, 2017. "Estimating DSGE models with zero interest rate policy," Journal of Monetary Economics, Elsevier, vol. 88(C), pages 35-49.
    43. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    44. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    45. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, September.
    46. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011. "Forecasting large datasets with Bayesian reduced rank multivariate models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.
    47. Joshua C. C. Chan, 2020. "Large Bayesian VARs: A Flexible Kronecker Error Covariance Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 68-79, January.
    48. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    49. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    50. McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
    51. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    52. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    53. Joshua Chan & Roberto Leon-Gonzalez & Rodney W. Strachan, 2018. "Invariant Inference and Efficient Computation in the Static Factor Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 819-828, April.
    54. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.
    55. Baumeister, Christiane & Benati, Luca, 2010. "Unconventional monetary policy and the great recession - Estimating the impact of a compression in the yield spread at the zero lower bound," Working Paper Series 1258, European Central Bank.
    56. István Barra & Agnieszka Borowska & Siem Jan Koopman, 2018. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 384-424.
    57. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    58. Canova, Fabio & Ferroni, Filippo, 2012. "The dynamics of US inflation: Can monetary policy explain the changes?," Journal of Econometrics, Elsevier, vol. 167(1), pages 47-60.
    59. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    60. Zoey Yi Zhao & Meng Xie & Mike West, 2016. "Dynamic dependence networks: Financial time series forecasting and portfolio decisions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(3), pages 311-332, May.
    61. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    62. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
    63. Rajarshi Guhaniyogi & David B. Dunson, 2015. "Bayesian Compressed Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1500-1514, December.
    64. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    65. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    66. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    67. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    68. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    69. Mao, Guangyu & Zhang, Zhengjun, 2018. "Stochastic tail index model for high frequency financial data with Bayesian analysis," Journal of Econometrics, Elsevier, vol. 205(2), pages 470-487.
    70. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    71. Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
    72. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, September.
    73. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2009. "On the evolution of the monetary policy transmission mechanism," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 997-1017, April.
    74. Zoey Zhao & Meng Xie & Mike West, 2016. "Rejoinder to ‘Dynamic dependence networks: Financial time series forecasting and portfolio decisions’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(3), pages 336-339, May.
    75. Chan, Joshua & Strachan, Rodney, 2012. "Estimation in Non-Linear Non-Gaussian State Space Models with Precision-Based Methods," MPRA Paper 39360, University Library of Munich, Germany.
    76. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-227, June.
    77. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 299-307, October.
    78. Jamie L. Cross & Aubrey Poon, 2020. "On the contribution of international shocks in Australian business cycle fluctuations," Empirical Economics, Springer, vol. 59(6), pages 2613-2637, December.
    79. Harvey, A C & Todd, P H J, 1983. "Forecasting Economic Time Series with Structural and Box-Jenkins Models: A Case Study: Response," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 313-315, October.
    80. Kalli, Maria & Griffin, Jim E., 2018. "Bayesian nonparametric vector autoregressive models," Journal of Econometrics, Elsevier, vol. 203(2), pages 267-282.
    81. Fu, Bowen, 2020. "Is the slope of the Phillips curve time-varying? Evidence from unobserved components models," Economic Modelling, Elsevier, vol. 88(C), pages 320-340.
    82. Petrova, Katerina, 2019. "A quasi-Bayesian local likelihood approach to time varying parameter VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 286-306.
    83. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srdelic, Leonarda & Davila-Fernandez, Marwil J., 2022. "Demographic transition and economic growth in 6-EU member states," MPRA Paper 112188, University Library of Munich, Germany.
    2. Giacomo Rella, 2021. "The Fed, housing and household debt over time," Department of Economics University of Siena 850, Department of Economics, University of Siena.
    3. van Dijk Herman K., 2024. "Challenges and Opportunities for Twenty First Century Bayesian Econometricians: A Personal View," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 155-176, April.
    4. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    5. Jamie L. Cross & Lennart Hoogerheide & Paul Labonne & Herman K. van Dijk, 2023. "Bayesian Mode Inference for Discrete Distributions in Economics and Finance," Working Papers No 11/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    6. Felix Chan & Les Oxley, 2023. "A pulse check on recent developments in time series econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 3-6, February.
    7. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    8. Anna Pajor & Justyna Wróblewska & Łukasz Kwiatkowski & Jacek Osiewalski, 2024. "Hybrid SV‐GARCH, t‐GARCH and Markov‐switching covariance structures in VEC models—Which is better from a predictive perspective?," International Statistical Review, International Statistical Institute, vol. 92(1), pages 62-86, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    4. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    5. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    6. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    7. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    8. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    9. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    10. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    11. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
    12. Chan, Joshua C.C. & Poon, Aubrey & Zhu, Dan, 2023. "High-dimensional conditionally Gaussian state space models with missing data," Journal of Econometrics, Elsevier, vol. 236(1).
    13. Tsionas, Mike G. & Izzeldin, Marwan & Trapani, Lorenzo, 2022. "Estimation of large dimensional time varying VARs using copulas," European Economic Review, Elsevier, vol. 141(C).
    14. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    15. Joshua C. C. Chan, 2019. "Large Bayesian vector autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    17. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
    18. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    19. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    20. Joshua C.C. Chan & Eric Eisenstat & Rodney W. Strachan, 2018. "Reducing dimensions in a large TVP-VAR," CAMA Working Papers 2018-49, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    State space model; filter; smoother; non-linear; non-Gaussian; high-dimension; dimension reduction.;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2020-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.