[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2017-67.html
   My bibliography  Save this paper

A state space approach to evaluate multi-horizon forecasts

Author

Listed:
  • Thomas Goodwin
  • Jing Tian
Abstract
We propose a state space modeling framework to evaluate a set of forecasts that target the same variable but are updated along the forecast horizon. The approach decomposes forecast errors into three distinct horizon-specific processes, namely, bias, rational error and implicit error, and attributes forecast revisions to corrections for these forecast errors. We derive the conditions under which forecasts that contain error that is irrelevant to the target can still present the second moment bounds of rational forecasts. By evaluating multi-horizon daily maximum temperature forecasts for Melbourne, Australia, we demonstrate how this modeling framework analyzes the dynamics of the forecast revision structure across horizons. Understanding forecast revisions is critical for weather forecast users to determine the optimal timing for their planning decision.

Suggested Citation

  • Thomas Goodwin & Jing Tian, 2017. "A state space approach to evaluate multi-horizon forecasts," CAMA Working Papers 2017-67, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2017-67
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2017-11/67_2017_goodwin_tian.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Rational forecasts; implicit forecasts; forecast revision structure; weather forecasts.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2017-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.