[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/edn/esedps/64.html
   My bibliography  Save this paper

Forecast Uncertainties in Macroeconomics Modelling: An Application to the UK Economy

Author

Abstract
This paper argues that probability forecasts convey information on the uncertainties that surround macro-economic forecast in straightforward manner which is preferable to other alternatives, including the use of confidence intervals. Point and probability forecasts obtained using a small macro-economic model are presented and evaluated using recursive forecasts generated from the model over the period 1999-2000. Out of sample probability forecasts of inflation and output growth are also provided over the period 2001-2003, and their implications discussed in relation to the Bank of England's inflation target and the need to avoid recessions, both as separate events and jointly. It is also shown how the probability forecasts can be used to provide insights on the inter-relationship of output growth and inflation at different horizons.

Suggested Citation

  • Athony Garratt & Kevin Lee & Mohammad Hashem Pesaran & Yongcheol Shin, 2001. "Forecast Uncertainties in Macroeconomics Modelling: An Application to the UK Economy," Edinburgh School of Economics Discussion Paper Series 64, Edinburgh School of Economics, University of Edinburgh.
  • Handle: RePEc:edn:esedps:64
    as

    Download full text from publisher

    File URL: http://www.econ.ed.ac.uk/papers/id64_esedps.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Shin, Yongcheol & Smith, Richard J., 2000. "Structural analysis of vector error correction models with exogenous I(1) variables," Journal of Econometrics, Elsevier, vol. 97(2), pages 293-343, August.
    2. repec:sae:niesru:v:156:y::i:1:p:72-79 is not listed on IDEAS
    3. Blake, Andrew P., 1996. "Forecast Error Bounds By Stochastic Simulation," National Institute Economic Review, National Institute of Economic and Social Research, vol. 156, pages 72-79, May.
    4. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    5. Carmen Fernandez & Eduardo Ley & Mark F. J. Steel, 2001. "Model uncertainty in cross-country growth regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 563-576.
    6. Fair, Ray C, 1980. "Estimating the Expected Predictive Accuracy of Econometric Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(2), pages 355-378, June.
    7. Anthony Garratt & Kevin Lee & M. Hashem Pesaran & Yongcheol Shin, 2003. "A Long run structural macroeconometric model of the UK," Economic Journal, Royal Economic Society, vol. 113(487), pages 412-455, April.
    8. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    9. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    10. Harbo, Ingrid, et al, 1998. "Asymptotic Inference on Cointegrating Rank in Partial Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 388-399, October.
    11. Poulizac, David & Weale, Martin & Young, Garry, 1996. "The Performance of National Institute Economic Forecasts," National Institute Economic Review, National Institute of Economic and Social Research, vol. 156, pages 55-62, May.
    12. M. Hashem Pesaran & Yongcheol Shin, 2002. "Long-Run Structural Modelling," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
    13. repec:sae:niesru:v:167:y::i:1:p:106-112 is not listed on IDEAS
    14. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    15. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    16. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    17. Nobay, A. R. & Peel, D. A., 2000. "Optimal monetary policy with a nonlinear Phillips curve," Economics Letters, Elsevier, vol. 67(2), pages 159-164, May.
    18. Anthony Garratt & Kevin Lee & Mohammad Hashem Pesaran & Yongcheol Shin, 1998. "A structural cointegrating VAR approach to macroeconometric modelling," Edinburgh School of Economics Discussion Paper Series 8, Edinburgh School of Economics, University of Edinburgh.
    19. repec:sae:niesru:v:156:y::i:1:p:55-62 is not listed on IDEAS
    20. Kenneth F. Wallis, 1999. "Asymmetric density forecasts of inflation and the Bank of England's fan chart," National Institute Economic Review, National Institute of Economic and Social Research, vol. 167(1), pages 106-112, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hashem Pesaran, 2000. "Forecast Uncertainties in Macroeconometric Modelling: An Application to the UK Economy," CESifo Working Paper Series 345, CESifo.
    2. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    3. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    4. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    5. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    6. Mahdi Barakchian, S., 2015. "Transmission of US monetary policy into the Canadian economy: A structural cointegration analysis," Economic Modelling, Elsevier, vol. 46(C), pages 11-26.
    7. repec:lan:wpaper:470 is not listed on IDEAS
    8. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    9. Lombardi, Marco J. & Galesi, Alessandro, 2009. "External shocks and international inflation linkages: a global VAR analysis," Working Paper Series 1062, European Central Bank.
    10. Pesaran, Mohammad Hashem & Holly, Sean & Dees, Stephane & Smith, L. Vanessa, 2007. "Long Run Macroeconomic Relations in the Global Economy," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 1, pages 1-20.
    11. Moral-Benito, Enrique, 2010. "Model averaging in economics," MPRA Paper 26047, University Library of Munich, Germany.
    12. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    13. repec:lan:wpaper:425 is not listed on IDEAS
    14. Cheng, Xu & Hansen, Bruce E., 2015. "Forecasting with factor-augmented regression: A frequentist model averaging approach," Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
    15. repec:lan:wpaper:539557 is not listed on IDEAS
    16. repec:lan:wpaper:413 is not listed on IDEAS
    17. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
    18. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
    19. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    20. Kenneth F. Wallis & Jan P. A. M. Jacobs, 2005. "Comparing SVARs and SEMs: two models of the UK economy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 209-228.
    21. Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
    22. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    23. Annari Waal & Reneé Eyden, 2014. "Monetary policy and inflation in South Africa: A VECM augmented with foreign variables," South African Journal of Economics, Economic Society of South Africa, vol. 82(1), pages 117-140, March.
    24. Bauer, Gregory H., 2017. "International house price cycles, monetary policy and credit," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 88-114.

    More about this item

    Keywords

    probability forecasting; long run structural VARs; macroeconometric modelling; forecast evaluation; probability forecasts of inflation; output growth;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:edn:esedps:64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Research Office (email available below). General contact details of provider: https://edirc.repec.org/data/deediuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.