[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/egu/wpaper/2322.html
   My bibliography  Save this paper

Mapping Critical Raw Materials in Green Technologies

Author

Listed:
  • Francesco de Cunzo
  • Davide Consoli
  • Francois Perruchas
  • Angelica Sbardella
Abstract
The goal of this paper is to elaborate an empirical analysis of the relationship between Critical Raw Materials (CRMs) and environmental technologies. Using text mining techniques to parse and analyse patent descriptions, we provide a thorough empirical exploration of (i) the dependence of green technologies on CRMs; (ii) the countries that lead the demand of CRMs; and (iii) the countries that are more exposed to global demand for CRMs. Framed in the context of recent policy debates on the viability of the green transition, our study points to criticalities associated to both the evolution of green technology and to the spatial network of demand and supply of CRMs.

Suggested Citation

  • Francesco de Cunzo & Davide Consoli & Francois Perruchas & Angelica Sbardella, 2023. "Mapping Critical Raw Materials in Green Technologies," Papers in Evolutionary Economic Geography (PEEG) 2322, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Dec 2023.
  • Handle: RePEc:egu:wpaper:2322
    as

    Download full text from publisher

    File URL: http://econ.geo.uu.nl/peeg/peeg2322.pdf
    File Function: Version December 2023
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
    2. Nicolas Berman & Mathieu Couttenier & Dominic Rohner & Mathias Thoenig, 2017. "This Mine Is Mine! How Minerals Fuel Conflicts in Africa," American Economic Review, American Economic Association, vol. 107(6), pages 1564-1610, June.
    3. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    4. Nicoló Barbieri & François Perruchas & Davide Consoli, 2020. "Specialization, Diversification, and Environmental Technology Life Cycle," Economic Geography, Taylor & Francis Journals, vol. 96(2), pages 161-186, March.
    5. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    6. Diemer, Andreas & Iammarino, Simona & Perkins, Richard & Gros, Axel, 2022. "Technology, resources and geography in a paradigm shift: the case of critical and conflict materials in ICTs," LSE Research Online Documents on Economics 115103, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardo Caldarola & Dario Mazzilli & Lorenzo Napolitano & Aurelio Patelli & Angelica Sbardella, 2023. "Economic complexity and the sustainability transition: A review of data, methods, and literature," Papers 2308.07172, arXiv.org, revised Mar 2024.
    2. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    3. Arnaud de La Tour & Matthieu Glachant & Yann Ménière, 2013. "What cost for photovoltaic modules in 2020? Lessons from experience curve models," Working Papers hal-00805668, HAL.
    4. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    5. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    6. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    8. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    9. Parrado, Ramiro & De Cian, Enrica, 2014. "Technology spillovers embodied in international trade: Intertemporal, regional and sectoral effects in a global CGE framework," Energy Economics, Elsevier, vol. 41(C), pages 76-89.
    10. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    11. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    12. Zhongju Liao & Xiang Zhu, 2022. "A configurational analysis of firms' environmental innovation: Evidence from China's key pollutant‐discharge listed companies," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1511-1522, December.
    13. Szolgayová, Jana & Golub, Alexander & Fuss, Sabine, 2014. "Innovation and risk-averse firms: Options on carbon allowances as a hedging tool," Energy Policy, Elsevier, vol. 70(C), pages 227-235.
    14. Massimiliano Mazzanti & Ugo Rizzo, 2014. "Moving'diversely'towards'the'green'economy.'CO2'abating'techno organisational'trajectories'and'environmental'policy'in'EU'sectors," SEEDS Working Papers 0914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    15. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    16. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    17. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    18. Benedict Probst & Simon Touboul & Matthieu Glachant & Antoine Dechezleprêtre, 2021. "Global trends in the invention and diffusion of climate change mitigation technologies," Nature Energy, Nature, vol. 6(11), pages 1077-1086, November.
    19. Solmaria Halleck Vega & Antoine Mandel, 2017. "A network-based approach to technology transfers in the context of climate policy," Documents de travail du Centre d'Economie de la Sorbonne 17009, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    20. Cui, Jingbo & Liu, Xi & Sun, Yongping & Yu, Haishan, 2020. "Can CDM projects trigger host countries’ innovation in renewable energy? Evidence of firm-level dataset from China," Energy Policy, Elsevier, vol. 139(C).

    More about this item

    Keywords

    Critical Raw Materials; Green Technologies; Text Mining;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:egu:wpaper:2322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/deguunl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.