[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20131602.html
   My bibliography  Save this paper

High frequency trading and price discovery

Author

Listed:
  • Brogaard, Jonathan
  • Hendershott, Terrence
  • Riordan, Ryan
Abstract
We examine empirically the role of high-frequency traders (HFTs) in price discovery and price efficiency. Based on our methodology, we find overall that HFTs facilitate price efficiency by trading in the direction of permanent price changes and in the opposite direction of transitory pricing errors, both on average and on the highest volatility days. This is done through their liquidity demanding orders. In contrast, HFTs' liquidity supplying orders are adversely selected. The direction of buying and selling by HFTs predicts price changes over short horizons measured in seconds. The direction of HFTs' trading is correlated with public information, such as macro news announcements, market-wide price movements, and limit order book imbalances. JEL Classification: G12

Suggested Citation

  • Brogaard, Jonathan & Hendershott, Terrence & Riordan, Ryan, 2013. "High frequency trading and price discovery," Working Paper Series 1602, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20131602
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1602.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    3. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    4. Keim, Donald B. & Madhavan, Ananth, 1995. "Anatomy of the trading process Empirical evidence on the behavior of institutional traders," Journal of Financial Economics, Elsevier, vol. 37(3), pages 371-398, March.
    5. Emiliano S. Pagnotta & Thomas Philippon, 2018. "Competing on Speed," Econometrica, Econometric Society, vol. 86(3), pages 1067-1115, May.
    6. Menkveld, Albert J. & Koopman, Siem Jan & Lucas, Andre, 2007. "Modeling Around-the-Clock Price Discovery for Cross-Listed Stocks Using State Space Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 213-225, April.
    7. Thierry Foucault & Ailsa Röell & Patrik Sandås, 2003. "Market Making with Costly Monitoring: An Analysis of the SOES Controversy," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 345-384.
    8. Thierry Foucault & Johan Hombert & Ioanid Roşu, 2016. "News Trading and Speed," Journal of Finance, American Finance Association, vol. 71(1), pages 335-382, February.
    9. Jean-Edouard Colliard & Thierry Foucault, 2012. "Trading Fees and Efficiency in Limit Order Markets," The Review of Financial Studies, Society for Financial Studies, vol. 25(11), pages 3389-3421.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    11. Panayides, Marios A., 2007. "Affirmative obligations and market making with inventory," Journal of Financial Economics, Elsevier, vol. 86(2), pages 513-542, November.
    12. repec:oup:rfinst:v:25:y::i:11:p:3389-3421 is not listed on IDEAS
    13. Jean-Edouard Colliard & Thierry Foucault, 2012. "Trading Fees and Efficiency in Limit Order Markets," Review of Financial Studies, Society for Financial Studies, vol. 25(11), pages 3389-3421.
    14. Stefan Nagel, 2012. "Evaporating Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 25(7), pages 2005-2039.
    15. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    16. Hirshleifer, David & Subrahmanyam, Avanidhar & Titman, Sheridan, 1994. "Security Analysis and Trading Patterns When Some Investors Receive Information before Others," Journal of Finance, American Finance Association, vol. 49(5), pages 1665-1698, December.
    17. Madhavan, Ananth & Sofianos, George, 1998. "An empirical analysis of NYSE specialist trading," Journal of Financial Economics, Elsevier, vol. 48(2), pages 189-210, May.
    18. Amihud, Yakov & Mendelson, Haim, 1980. "Dealership market : Market-making with inventory," Journal of Financial Economics, Elsevier, vol. 8(1), pages 31-53, March.
    19. Hasabrouck, Joel & Sofianos, George, 1993. "The Trades of Market Makers: An Empirical Analysis of NYSE Specialists," Journal of Finance, American Finance Association, vol. 48(5), pages 1565-1593, December.
    20. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    21. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    22. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    23. Colliard, Jean-Edouard, 2013. "Catching falling knives: speculating on market overreaction," Working Paper Series 1545, European Central Bank.
    24. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    25. Álvaro Cartea & José Penalva, 2012. "Where is the Value in High Frequency Trading?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-46.
    26. Pankaj K. Jain, 2005. "Financial Market Design and the Equity Premium: Electronic versus Floor Trading," Journal of Finance, American Finance Association, vol. 60(6), pages 2955-2985, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    2. repec:uts:finphd:34 is not listed on IDEAS
    3. Hendershott, Terrence & Menkveld, Albert J., 2014. "Price pressures," Journal of Financial Economics, Elsevier, vol. 114(3), pages 405-423.
    4. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    5. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    6. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    7. Thierry Foucault & Roman Kozhan & Wing Wah Tham, 2017. "Toxic Arbitrage," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1053-1094.
    8. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    9. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    10. Comerton-Forde, Carole & Putniņš, Tālis J., 2015. "Dark trading and price discovery," Journal of Financial Economics, Elsevier, vol. 118(1), pages 70-92.
    11. Murphy Jun Jie Lee, 2013. "The Microstructure of Trading Processes on the Singapore Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4, July-Dece.
    12. Suchismita Mishra & Le Zhao, 2021. "Order Routing Decisions for a Fragmented Market: A Review," JRFM, MDPI, vol. 14(11), pages 1-32, November.
    13. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    14. Albert J. Menkveld & Marius A. Zoican, 2017. "Need for Speed? Exchange Latency and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1188-1228.
    15. O’Hara, Maureen, 2015. "High frequency market microstructure," Journal of Financial Economics, Elsevier, vol. 116(2), pages 257-270.
    16. Panayides, Marios A., 2007. "Affirmative obligations and market making with inventory," Journal of Financial Economics, Elsevier, vol. 86(2), pages 513-542, November.
    17. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    18. Choi, Jin Hyuk & Larsen, Kasper & Seppi, Duane J., 2019. "Information and trading targets in a dynamic market equilibrium," Journal of Financial Economics, Elsevier, vol. 132(3), pages 22-49.
    19. Marcin Wojtowicz, 2014. "The Determinants of CDS Bid-ask Spreads," Tinbergen Institute Discussion Papers 14-138/IV/ DSF82, Tinbergen Institute.
    20. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    21. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).

    More about this item

    Keywords

    high frequency trading; price discovery; price formation; pricing errors;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20131602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.