[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/2007846.html
   My bibliography  Save this paper

Information combination and forecast (st)ability evidence from vintages of time-series data

Author

Listed:
  • Ciccarelli, Matteo
  • Altavilla, Carlo
Abstract
This paper explores the role of model and vintage combination in forecasting, with a novel approach that exploits the information contained in the revision history of a given variable. We analyse the forecast performance of eleven widely used models to predict inflation and GDP growth, in the three dimensions of accuracy, uncertainty and stability by using the real-time data set for macroeconomists developed at the Federal Reserve Bank of Philadelphia. Instead of following the common practice of investigating only therelationship between first available and fully revised data, we analyse the entire revision history for each variable and extract a signal from the entire distribution of vintages of a given variable to improve forecast accuracy and precision. The novelty of our study relies on the interpretation of the vintages of a real time data base as related realizations or units of a panel data set. The results suggest that imposing appropriate weights on competing models of inflation forecasts and output growth - reflecting the relative ability each model has over different sub-sample periods - substantially increases the forecast performance. More interestingly, our results indicate that augmenting the information set with a signal extracted from all available vintages of time-series consistently leads to a substantial improvement in forecast accuracy, precision and stability. JEL Classification: C32, C33, C53

Suggested Citation

  • Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Information combination and forecast (st)ability evidence from vintages of time-series data," Working Paper Series 846, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:2007846
    Note: 224580
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp846.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
    2. Evan F. Koenig & Sheila Dolmas & Jeremy Piger, 2003. "The Use and Abuse of Real-Time Data in Economic Forecasting," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 618-628, August.
    3. Carlo Altavilla & Matteo Ciccarelli, 2006. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area," Discussion Papers 7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
    4. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    5. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    6. Canova, Fabio, 1993. "Modelling and forecasting exchange rates with a Bayesian time-varying coefficient model," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 233-261.
    7. Athanasios Orphanides and Simon van Norden, 2001. "The Reliability of Inflation Forecasts Based on Output Gaps in Real Time," Computing in Economics and Finance 2001 247, Society for Computational Economics.
    8. Croushore, Dean, 2006. "Forecasting with Real-Time Macroeconomic Data," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 17, pages 961-982, Elsevier.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Swanson, Norman R. & van Dijk, Dick, 2006. "Are Statistical Reporting Agencies Getting It Right? Data Rationality and Business Cycle Asymmetry," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 24-42, January.
    11. Patterson, K. D., 2003. "Exploiting information in vintages of time-series data," International Journal of Forecasting, Elsevier, vol. 19(2), pages 177-197.
    12. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    13. Swanson Norman, 1996. "Forecasting Using First-Available Versus Fully Revised Economic Time-Series Data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-20, April.
    14. Dean Croushore & Tom Stark, 2003. "A Real-Time Data Set for Macroeconomists: Does the Data Vintage Matter?," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 605-617, August.
    15. Rosanne Cole, 1969. "Data Errors and Forecasting Accuracy," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 47-82, National Bureau of Economic Research, Inc.
    16. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    17. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    18. Pesaran, M. Hashem & Smith, Ron, 1995. "Estimating long-run relationships from dynamic heterogeneous panels," Journal of Econometrics, Elsevier, vol. 68(1), pages 79-113, July.
    19. Guerrero, Victor M., 1993. "Combining historical and preliminary information to obtain timely time series data," International Journal of Forecasting, Elsevier, vol. 9(4), pages 477-485, December.
    20. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    21. Matteo Ciccarelli & Günter Coenen & Jérôme Henry, 2006. "A real-time database for the euro area," Research Bulletin, European Central Bank, vol. 5, pages 6-8.
    22. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    23. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    24. Chang-Jin Kim & Charles R. Nelson, 1999. "Has The U.S. Economy Become More Stable? A Bayesian Approach Based On A Markov-Switching Model Of The Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 608-616, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    2. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage combination from a real-time dataset," CSEF Working Papers 274, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    3. D'Elia, Enrico, 2010. "Predictions vs preliminary sample estimates," MPRA Paper 36070, University Library of Munich, Germany.
    4. Marie Bessec, 2010. "Étalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Économie et Prévision, Programme National Persée, vol. 193(2), pages 77-99.
    5. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    6. Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
    7. D’Elia Enrico, 2014. "Predictions vs. Preliminary Sample Estimates: The Case of Eurozone Quarterly GDP," Journal of Official Statistics, Sciendo, vol. 30(3), pages 499-520, September.
    8. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    9. Carlo Altavilla & Matteo Ciccarelli, 2008. "Inflation models, optimal monetary policy and uncertain unemployment dynamics: Evidence from the US and the euro area," Discussion Papers 8_2008, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimiliano Marcellino, 2008. "A linear benchmark for forecasting GDP growth and inflation?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 305-340.
    2. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    3. Clements, Michael P. & Galvao, Ana Beatriz, 2006. "Macroeconomic Forecasting with Mixed Frequency Data: Forecasting US output growth and inflation," Economic Research Papers 269743, University of Warwick - Department of Economics.
    4. Carlo Altavilla & Matteo Ciccarelli, 2011. "Monetary Policy Analysis in Real-Time. Vintage Combination from a Real-Time Dataset," CESifo Working Paper Series 3372, CESifo.
    5. Heij, Christiaan & van Dijk, Dick & Groenen, Patrick J.F., 2011. "Real-time macroeconomic forecasting with leading indicators: An empirical comparison," International Journal of Forecasting, Elsevier, vol. 27(2), pages 466-481, April.
    6. Clements, Michael P. & Galvão, Ana Beatriz, 2013. "Forecasting with vector autoregressive models of data vintages: US output growth and inflation," International Journal of Forecasting, Elsevier, vol. 29(4), pages 698-714.
    7. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    8. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    9. Clements, Michael P. & Beatriz Galvão, Ana, 2010. "First announcements and real economic activity," European Economic Review, Elsevier, vol. 54(6), pages 803-817, August.
    10. Hossein Hassani & Abdol S. Soofi & Anatoly Zhigljavsky, 2013. "Predicting inflation dynamics with singular spectrum analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 743-760, June.
    11. Michael P. Clements, 2014. "Anticipating Early Data Revisions to US GDP and the Effects of Releases on Equity Markets," ICMA Centre Discussion Papers in Finance icma-dp2014-06, Henley Business School, University of Reading.
    12. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    13. Emilia Tomczyk, 2013. "End of sample vs. real time data: perspectives for analysis of expectations," Working Papers 68, Department of Applied Econometrics, Warsaw School of Economics.
    14. Clark, Todd E. & McCracken, Michael W., 2009. "Tests of Equal Predictive Ability With Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 441-454.
    15. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
    16. Sinclair, Tara M., 2019. "Characteristics and implications of Chinese macroeconomic data revisions," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1108-1117.
    17. Clements Michael P., 2012. "Forecasting U.S. Output Growth with Non-Linear Models in the Presence of Data Uncertainty," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(1), pages 1-27, January.
    18. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    19. Denis Shibitov & Mariam Mamedli, 2021. "Forecasting Russian Cpi With Data Vintages And Machine Learning Techniques," Bank of Russia Working Paper Series wps70, Bank of Russia.
    20. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.

    More about this item

    Keywords

    data and model uncertainty; forecast combination; real-time data;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:2007846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.