[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/2002142.html
   My bibliography  Save this paper

Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank

Author

Listed:
  • Cabrero, Alberto
  • Camba-Méndez, Gonzalo
  • Hirsch, Astrid
  • Nieto, Fernando
Abstract
The main focus of this paper is to model the daily series of banknotes in circulation in the context of the liquidity management of the Eurosystem. The series of banknotes in circulation displays very marked seasonal patterns. To the best of our knowledge the empirical performance of two competing approaches to model seasonality in daily time series, namely the ARIMA-based approach and the Structural Time Series approach, has never been put to the test. The application presented in this paper provides valid intuition on the merits of each approach. The forecasting performance of the models is also assessed in the context of their impact on the liquidity management of the Eurosystem. JEL Classification: C22, C51, C53, C59

Suggested Citation

  • Cabrero, Alberto & Camba-Méndez, Gonzalo & Hirsch, Astrid & Nieto, Fernando, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Paper Series 142, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:2002142
    Note: 337420
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp142.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierce, David A & Grupe, Michael R & Cleveland, William P, 1984. "Seasonal Adjustment of the Weekly Monetary Aggregates: A Model-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 260-270, July.
    2. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
    3. William Bell & Steven Hillmer, 1991. "Initializing The Kalman Filter For Nonstationary Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 283-300, July.
    4. Harvey, Andrew & Koopman, Siem Jan & Riani, Marco, 1997. "The Modeling and Seasonal Adjustment of Weekly Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 354-368, July.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    7. Bindseil, Ulrich, 2001. "Central bank forecasts of liquidity factors: Quality, publication and the control of the overnight rate," Working Paper Series 70, European Central Bank.
    8. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    9. Bindseil, Ulrich & Seitz, Franz, 2001. "The supply and demand for Eurosystem deposits - The first 18 months," Working Paper Series 44, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    2. Barend Abeln & Jan P. A. M. Jacobs, 2023. "COVID-19 and Seasonal Adjustment," SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 53-61, Springer.
    3. Mariam El Hamiani Khatat, 2018. "Monetary Policy and Models of Currency Demand," IMF Working Papers 2018/028, International Monetary Fund.
    4. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    5. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    6. Ollech, Daniel, 2018. "Seasonal adjustment of daily time series," Discussion Papers 41/2018, Deutsche Bundesbank.
    7. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    8. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    9. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    10. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    11. Richard H. Clarida & Lucio Sarno & Mark P. Taylor & Giorgio Valente, 2006. "The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1193-1224, May.
    12. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    13. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    14. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    15. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    16. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    17. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    18. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    19. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.
    20. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.

    More about this item

    Keywords

    Daily Forecast; liquidity management; seasonality; time series models;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:2002142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.