[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-230744.html
   My bibliography  Save this paper

Aggregation of linear models for panel data

Author

Listed:
  • Alexandre Petkovic
  • David Veredas
Abstract
We study the impact of individual and temporal aggregation in linear static and dy- namic models for panel data in terms of model specification and efficiency of the estimated parameters. Model wise we find that i) individual aggregation does not affect the model structure but temporal aggregation may introduce residual autocorrelation, and ii) individual aggregation entails heteroskedasticity while temporal aggregation does not. Estimation wise we find that i) in the static model, estimation by least squares with the aggregated data entails a decrease in the efficiency of the estimated parameters but we cannot rank different aggregation schemes in terms of efficiency, and ii) in the dynamic model, estimation by GMM does not necessarily entail a decrease in the efficiency of the estimated parameters under individual aggregation and no analytic comparison can be established for temporal aggregation, though simulations suggests that temporal aggregation deteriorates the accuracy of the estimates.

Suggested Citation

  • Alexandre Petkovic & David Veredas, 2009. "Aggregation of linear models for panel data," Working Papers ECARES 2009-012, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/230744
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/230744/3/2009-012-PETKOVIC_VEREDAS-aggregation.pdf
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    2. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    3. Granger, C. W. J., 1987. "Implications of Aggregation with Common Factors," Econometric Theory, Cambridge University Press, vol. 3(2), pages 208-222, April.
    4. Weiss, Andrew A., 1984. "Systematic sampling and temporal aggregation in time series models," Journal of Econometrics, Elsevier, vol. 26(3), pages 271-281, December.
    5. Palm, Franz C & Nijman, Theo E, 1984. "Missing Observations in the Dynamic Regression Model," Econometrica, Econometric Society, vol. 52(6), pages 1415-1435, November.
    6. Forni, Mario & Lippi, Marco, 1997. "Aggregation and the Microfoundations of Dynamic Macroeconomics," OUP Catalogue, Oxford University Press, number 9780198288008.
    7. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521405515, September.
    8. Zellner, Arnold & Montmarquette, Claude, 1971. "A Study of Some Aspects of Temporal Aggregation Problems in Econometric Analyses," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 335-342, November.
    9. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    10. Brewer, K. R. W., 1973. "Some consequences of temporal aggregation and systematic sampling for ARMA and ARMAX models," Journal of Econometrics, Elsevier, vol. 1(2), pages 133-154, June.
    11. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models 2 volume set," Cambridge Books, Cambridge University Press, number 9780521478373, July.
    12. Sims, Christopher A, 1971. "Discrete Approximations to Continuous Time Distributed Lags in Econometrics," Econometrica, Econometric Society, vol. 39(3), pages 545-563, May.
    13. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurz, Michael & Kleimeier, Stefanie, 2019. "Credit Supply: Are there negative spillovers from banks’ proprietary trading? (RM/19/005-revised-)," Research Memorandum 026, Maastricht University, Graduate School of Business and Economics (GSBE).
    2. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    3. Kurz, Michael & Kleimeier, Stefanie, 2019. "Credit Supply: Are there negative spillovers from banks’ proprietary trading?," Research Memorandum 005, Maastricht University, Graduate School of Business and Economics (GSBE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Petkovic, 2009. "Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models," ULB Institutional Repository 2013/210357, ULB -- Universite Libre de Bruxelles.
    2. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    3. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    5. Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Aggregation of exponential smoothing processes with an application to portfolio risk evaluation," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1437-1450.
    6. Hassler, Uwe, 2011. "Estimation of fractional integration under temporal aggregation," Journal of Econometrics, Elsevier, vol. 162(2), pages 240-247, June.
    7. repec:hal:journl:peer-00815563 is not listed on IDEAS
    8. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    9. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    10. Maria Nikoloudaki & Dikaios Tserkezos, 2008. "Temporal Aggregation Effects in Choosing the Optimal Lag Order in Stable ARMA Models: Some Monte Carlo Results," Working Papers 0822, University of Crete, Department of Economics.
    11. Forni, Mario & Lippi, Marco, 1999. "Aggregation of linear dynamic microeconomic models," Journal of Mathematical Economics, Elsevier, vol. 31(1), pages 131-158, February.
    12. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    13. Chan, Wai-Sum, 2022. "On temporal aggregation of some nonlinear time-series models," Econometrics and Statistics, Elsevier, vol. 21(C), pages 38-49.
    14. Nijman, Theo E & Palm, Franz C, 1990. "Predictive Accuracy Gain from Disaggregate Sampling in ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(4), pages 405-415, October.
    15. Pesaran, M. Hashem & Chudik, Alexander, 2014. "Aggregation in large dynamic panels," Journal of Econometrics, Elsevier, vol. 178(P2), pages 273-285.
    16. Prosper Dovonon & Alastair Hall & Frank Kleibergen, 2018. "Inference in Second-Order Identified Models," CIRANO Working Papers 2018s-36, CIRANO.
    17. Jean Imbs & Eric Jondeau & Florian Pelgrin, 2006. "Aggregating Phillips curves," 2006 Meeting Papers 640, Society for Economic Dynamics.
    18. Massimiliano Marcellino & Oscar Jorda, "undated". "Stochastic Processes Subject to Time-Scale Transformations: An Application to High-Frequency FX Data," Working Papers 164, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    19. Giacomo Sbrana & Andrea Silvestrini, 2012. "Temporal aggregation of cyclical models with business cycle applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 93-107, March.
    20. Ramirez, Octavio A., 2011. "Conclusive Evidence on the Benefits of Temporal Disaggregation to Improve the Precision of Time Series Model Forecasts," Faculty Series 113520, University of Georgia, Department of Agricultural and Applied Economics.
    21. Yan Shen & Cheng Hsiao & Hiroshi Fujiki, 2005. "Aggregate vs. disaggregate data analysis-a paradox in the estimation of a money demand function of Japan under the low interest rate policy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 579-601.

    More about this item

    Keywords

    panel data; temporal aggregation; model specification; efficiency;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/230744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.