[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ecm/nawm04/413.html
   My bibliography  Save this paper

Consistency conditions for affine term structure models

Author

Listed:
  • Sergei Levendorskii
Abstract
Affine term structure models are widely applied for pricing of bonds and interest rate derivatives but the consistency of affine term structure models (ATSM) in cases when the short rate may be unbounded from below remains essentially an open question. The main stress in the classification paper Dai and Singleton (2000) is on the overdeterminacy of many ATSM models; however, for wide regions in the parameter's space, standard ATSM models may be inconsistent, and the following issues must be addressed. First, the standard approach to ATSM is based on the reduction to the Riccati equations. The reduction uses the Feynman-Kac formula but the general Feynman-Kac theorem is easily applicable only when the short rate is bounded from below, which excludes many classes used in applications. Second, the solution to the bond pricing problem must be a decreasing function of any state variable for which the corresponding coefficients in the formula for the short rate is positive; the solution must also decrease as the time to maturity increases, if the tuple of state variables belongs to the region where the short rate is positive. In the paper, sufficient conditions for the application of the Feynman-Kac formula, and monotonicity of the bond price are derived, for wide classes of affine term structure models in the pure diffusion case. Necessary conditions for the monotonicity are derived as well. The results can be generalized for jump-diffusion processes. We consider a simple two-factor A_1(2) family, next more general A_1(n) family, and then the family A_2(3) (other families A_m(n) can be studied similarly), and derive, in terms of parameters of the model, I. simple necessary conditions for the decay of the bond price as a function of the time to maturity, in the region where the short rate is positive; II. sufficient conditions for the decay of the bond price; we do not know how wide is the gap between these conditions and the (unknown to us) necessary and sufficient conditions; III. sufficient conditions under which the reduction to the system of the Riccati equations can be justified. For A_1(2) family, and in many other cases, these condition are weaker than the necessary condition in (I). Remarks. a) Necessary and sufficient conditions for the decay of the bond price at infinity, and in a vicinity of 0, are easier to derive, and under these conditions, a ``numerical proof" of the monotonicity of the bond price on a large finite interval can be used to show that for given parameters' values, the model is consistent. b) As our study shows, for the family A_1(n), the monotonicity of the bond price in time to maturity is the main consistency problem for ATSM. On the other hand, should one use the model for a fixed (and sufficiently small) time to maturity then the model can be consistent on this time interval; and it is possible to derive sufficient condition for the decay of the bond price on a small interval near maturity, which depends on parameters of the model. c) When it is necessary to consider more general contingent claims, a sufficient condition for (III), in terms of the rate of growth of the pay-off at infinity, can be derived relatively easily, and the same is true of a necessary condition for the decay of the price. The sufficient conditions for the monotonicity will be more difficult to derive. d) It is plausible that in some empirical studies, the fitted ATSM is inconsistent in the sense that the monotonicity condition fails. It might be possible to construct an arbitrage strategy against a counterparty who uses an inconsistent model

Suggested Citation

  • Sergei Levendorskii, 2004. "Consistency conditions for affine term structure models," Econometric Society 2004 North American Winter Meetings 413, Econometric Society.
  • Handle: RePEc:ecm:nawm04:413
    as

    Download full text from publisher

    File URL: http://www.eco.utexas.edu/~sboyarch/affdiff2.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Darrel Duffie & Damir Filipović & Walter Schachermayer, 2002. "Affine Processes and Application in Finance," NBER Technical Working Papers 0281, National Bureau of Economic Research, Inc.
    5. George Chacko, 2002. "Pricing Interest Rate Derivatives: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 195-241, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Gourieroux & Razvan Sufana, 2006. "A Classification of Two-Factor Affine Diffusion Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 31-52.
    2. Sergei LevendorskiĬ, 2006. "Consistency conditions for affine term structure models," Annals of Finance, Springer, vol. 2(2), pages 207-224, March.
    3. Cheridito, Patrick & Filipovic, Damir & Kimmel, Robert L., 2007. "Market price of risk specifications for affine models: Theory and evidence," Journal of Financial Economics, Elsevier, vol. 83(1), pages 123-170, January.
    4. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergei LevendorskiĬ, 2006. "Consistency conditions for affine term structure models," Annals of Finance, Springer, vol. 2(2), pages 207-224, March.
    2. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    5. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    6. Cai, Lili & Swanson, Norman R., 2011. "In- and out-of-sample specification analysis of spot rate models: Further evidence for the period 1982-2008," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 743-764, September.
    7. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    8. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    9. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    10. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    11. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    12. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    13. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    14. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    15. Glasserman, Paul & Kim, Kyoung-Kuk, 2009. "Saddlepoint approximations for affine jump-diffusion models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 15-36, January.
    16. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    17. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    18. Yu, Jun, 2014. "Econometric Analysis Of Continuous Time Models: A Survey Of Peter Phillips’S Work And Some New Results," Econometric Theory, Cambridge University Press, vol. 30(4), pages 737-774, August.
    19. Gonçalo Faria & João Correia-da-Silva, 2012. "The price of risk and ambiguity in an intertemporal general equilibrium model of asset prices," Annals of Finance, Springer, vol. 8(4), pages 507-531, November.
    20. Juneja, Januj, 2014. "Term structure estimation in the presence of autocorrelation," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 119-129.

    More about this item

    Keywords

    Affine term structure models; consistency conditions;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:nawm04:413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.