[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1338.html
   My bibliography  Save this paper

From Boom to Bust?: A Critical Look at US Shale Gas Projections

Author

Listed:
  • Philipp M. Richter
Abstract
US shale gas production is generally expected to continue its fast rise. However, a cautious evaluation is needed. Shale gas resource estimates are potentially overoptimistic and it is uncertain to which extent they can be produced economically. Moreover, the adverse environmental effects of ever more wells to be drilled may lead to a fall in public acceptance and a strengthening of regulation. The objective of this paper is hence twofold: providing a critical look at current US shale gas projections, and investigating in a second step the implications of a less optimistic development by means of numerical simulation. In a world of declining US shale gas production after 2015, natural gas consumption outside the USA is reduced from its reference path by at least as much as US consumption. Trade flows are redirected, and the current US debate on LNG export capacity requirements becomes obsolete.

Suggested Citation

  • Philipp M. Richter, 2013. "From Boom to Bust?: A Critical Look at US Shale Gas Projections," Discussion Papers of DIW Berlin 1338, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1338
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.432228.de/dp1338.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Henry D. Jacoby & Francis M. O'Sullivan & Sergey Paltsev, 2012. "The Influence of Shale Gas on U.S. Energy and Environmental Policy," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Paltsev, Sergey & Jacoby, Henry D. & Reilly, John M. & Ejaz, Qudsia J. & Morris, Jennifer & O'Sullivan, Francis & Rausch, Sebastian & Winchester, Niven & Kragha, Oghenerume, 2011. "The future of U.S. natural gas production, use, and trade," Energy Policy, Elsevier, vol. 39(9), pages 5309-5321, September.
    3. Holahan, Robert & Arnold, Gwen, 2013. "An institutional theory of hydraulic fracturing policy," Ecological Economics, Elsevier, vol. 94(C), pages 127-134.
    4. Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
    5. Wang, Zhongmin & Krupnick, Alan, 2013. "A Retrospective Review of Shale Gas Development in the United States: What Led to the Boom?," RFF Working Paper Series dp-13-12, Resources for the Future.
    6. J. David Hughes, 2013. "A reality check on the shale revolution," Nature, Nature, vol. 494(7437), pages 307-308, February.
    7. Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
    8. Howard Rogers, 2011. "Shale gas--the unfolding story," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 27(1), pages 117-143, Spring.
    9. Logan, Jeffrey & Lopez, Anthony & Mai, Trieu & Davidson, Carolyn & Bazilian, Morgan & Arent, Douglas, 2013. "Natural gas scenarios in the U.S. power sector," Energy Economics, Elsevier, vol. 40(C), pages 183-195.
    10. Johnson, Corey & Boersma, Tim, 2013. "Energy (in)security in Poland the case of shale gas," Energy Policy, Elsevier, vol. 53(C), pages 389-399.
    11. Lafrancois, Becky A., 2012. "A lot left over: Reducing CO2 emissions in the United States’ electric power sector through the use of natural gas," Energy Policy, Elsevier, vol. 50(C), pages 428-435.
    12. Ruester, Sophia & Neumann, Anne, 2008. "The prospects for liquefied natural gas development in the US," Energy Policy, Elsevier, vol. 36(8), pages 3150-3158, August.
    13. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    14. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Methods of estimating shale gas resources – Comparison, evaluation and implications," Energy, Elsevier, vol. 59(C), pages 116-125.
    15. Weber, Jeremy G., 2012. "The effects of a natural gas boom on employment and income in Colorado, Texas, and Wyoming," Energy Economics, Elsevier, vol. 34(5), pages 1580-1588.
    16. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.
    17. Robert Howarth & Renee Santoro & Anthony Ingraffea, 2012. "Venting and leaking of methane from shale gas development: response to Cathles et al," Climatic Change, Springer, vol. 113(2), pages 537-549, July.
    18. Blohm, Andrew & Peichel, Jeremy & Smith, Caroline & Kougentakis, Alexandra, 2012. "The significance of regulation and land use patterns on natural gas resource estimates in the Marcellus shale," Energy Policy, Elsevier, vol. 50(C), pages 358-369.
    19. Hu, Desheng & Xu, Shengqing, 2013. "Opportunity, challenges and policy choices for China on the development of shale gas," Energy Policy, Elsevier, vol. 60(C), pages 21-26.
    20. Franziska Holz & Philipp M. Richter & Ruud Egging, 2013. "The Role of Natural Gas in a Low-Carbon Europe: Infrastructure and Regional Supply Security in the Global Gas Model," Discussion Papers of DIW Berlin 1273, DIW Berlin, German Institute for Economic Research.
    21. Ferris, Michael C. & Munson, Todd S., 2000. "Complementarity problems in GAMS and the PATH solver," Journal of Economic Dynamics and Control, Elsevier, vol. 24(2), pages 165-188, February.
    22. Paul L. Joskow, 2013. "Natural Gas: From Shortages to Abundance in the United States," American Economic Review, American Economic Association, vol. 103(3), pages 338-343, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weijermars, Ruud, 2015. "Shale gas technology innovation rate impact on economic Base Case – Scenario model benchmarks," Applied Energy, Elsevier, vol. 139(C), pages 398-407.
    2. Egging-Bratseth, Ruud & Holz, Franziska & Czempinski, Victoria, 2021. "Freedom gas to Europe: Scenarios analyzed using the Global Gas Model," Research in International Business and Finance, Elsevier, vol. 58(C).
    3. Egging, Ruud & Holz, Franziska, 2016. "Risks in global natural gas markets: Investment, hedging and trade," Energy Policy, Elsevier, vol. 94(C), pages 468-479.
    4. Egging, Ruud & Pichler, Alois & Kalvø, Øyvind Iversen & Walle–Hansen, Thomas Meyer, 2017. "Risk aversion in imperfect natural gas markets," European Journal of Operational Research, Elsevier, vol. 259(1), pages 367-383.
    5. Hilaire, Jérôme & Bauer, Nico & Brecha, Robert J., 2015. "Boom or bust? Mapping out the known unknowns of global shale gas production potential," Energy Economics, Elsevier, vol. 49(C), pages 581-587.
    6. Richter, Philipp M. & Holz, Franziska, 2015. "All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe," Energy Policy, Elsevier, vol. 80(C), pages 177-189.
    7. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    8. Weijermars, Ruud, 2014. "US shale gas production outlook based on well roll-out rate scenarios," Applied Energy, Elsevier, vol. 124(C), pages 283-297.
    9. Ruud Egging & Franziska Holz, 2015. "Local Consequences of Global Uncertainty: Capacity Development and LNG Trade under Shale Gas and Demand Uncertainty and Disruption Risk," Discussion Papers of DIW Berlin 1498, DIW Berlin, German Institute for Economic Research.
    10. Langer, Lissy & Huppmann, Daniel & Holz, Franziska, 2016. "Lifting the US crude oil export ban: A numerical partial equilibrium analysis," Energy Policy, Elsevier, vol. 97(C), pages 258-266.
    11. Sheridan Few & Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Stephane Mangeon & Dan Bernie & Jason Lowe, 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties," Energies, MDPI, vol. 10(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Kong Chyong and David M. Reiner, 2015. "Economics and Politics of Shale Gas in Europe," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    2. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    3. Charles F. Mason & Lucija A. Muehlenbachs & Sheila M. Olmstead, 2015. "The Economics of Shale Gas Development," Annual Review of Resource Economics, Annual Reviews, vol. 7(1), pages 269-289, October.
    4. Guanglin Pi & Xiucheng Dong & Cong Dong & Jie Guo & Zhengwei Ma, 2015. "The Status, Obstacles and Policy Recommendations of Shale Gas Development in China," Sustainability, MDPI, vol. 7(3), pages 1-20, February.
    5. Zwickl, Klara, 2019. "The demographics of fracking: A spatial analysis for four U.S. states," Ecological Economics, Elsevier, vol. 161(C), pages 202-215.
    6. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    7. Hongxun Liu & Jianglong Li, 2018. "The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    8. Sheridan Few & Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Stephane Mangeon & Dan Bernie & Jason Lowe, 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties," Energies, MDPI, vol. 10(2), pages 1-22, January.
    9. Yao, Liuyang & Sui, Bo, 2020. "Heterogeneous preferences for shale water management: Evidence from a choice experiment in Fuling shale gas field, southwest China," Energy Policy, Elsevier, vol. 147(C).
    10. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    11. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    12. Eleanor Stephenson & Karena Shaw, 2013. "¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation," Sustainability, MDPI, vol. 5(5), pages 1-23, May.
    13. Darrick Evensen & Christopher Clarke & Richard Stedman, 2014. "A New York or Pennsylvania state of mind: social representations in newspaper coverage of gas development in the Marcellus Shale," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(1), pages 65-77, March.
    14. Li, Yanbin & Li, Yun & Wang, Bingqian & Chen, Zhuoer & Nie, Dan, 2016. "The status quo review and suggested policies for shale gas development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 420-428.
    15. Richter, Philipp M. & Holz, Franziska, 2015. "All quiet on the eastern front? Disruption scenarios of Russian natural gas supply to Europe," Energy Policy, Elsevier, vol. 80(C), pages 177-189.
    16. Meier, Felix D. & Quaas, Martin F., 2021. "Booming gas – A theory of endogenous technological change in resource extraction," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    17. Yunna, Wu & Kaifeng, Chen & Yisheng, Yang & Tiantian, Feng, 2015. "A system dynamics analysis of technology, cost and policy that affect the market competition of shale gas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 235-243.
    18. James Feyrer & Erin T. Mansur & Bruce Sacerdote, 2017. "Geographic Dispersion of Economic Shocks: Evidence from the Fracking Revolution," American Economic Review, American Economic Association, vol. 107(4), pages 1313-1334, April.
    19. Bistline, John E., 2014. "Natural gas, uncertainty, and climate policy in the US electric power sector," Energy Policy, Elsevier, vol. 74(C), pages 433-442.
    20. Baranzelli, Claudia & Vandecasteele, Ine & Ribeiro Barranco, Ricardo & Mari i Rivero, Ines & Pelletier, Nathan & Batelaan, Okke & Lavalle, Carlo, 2015. "Scenarios for shale gas development and their related land use impacts in the Baltic Basin, Northern Poland," Energy Policy, Elsevier, vol. 84(C), pages 80-95.

    More about this item

    Keywords

    Natural Gas; Shale; USA; Scenarios; Equilibrium Modeling;
    All these keywords.

    JEL classification:

    • Q37 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Issues in International Trade
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q33 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Resource Booms (Dutch Disease)
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.