[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/dar/wpaper/77136.html
   My bibliography  Save this paper

Catchword Marketing Automation

Author

Listed:
  • Heimbach, Irina
  • Kostyra, Daniel S.
  • Hinz, Oliver
Abstract
No abstract is available for this item.

Suggested Citation

  • Heimbach, Irina & Kostyra, Daniel S. & Hinz, Oliver, 2015. "Catchword Marketing Automation," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77136, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  • Handle: RePEc:dar:wpaper:77136
    Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/77136/
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malik, Nishtha & Kar, Arpan Kumar & Tripathi, Shalini Nath & Gupta, Shivam, 2023. "Exploring the impact of fairness of social bots on user experience," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    2. Bauer, Kevin & von Zahn, Moritz & Hinz, Oliver, 2023. "Please take over: XAI, delegation of authority, and domain knowledge," SAFE Working Paper Series 394, Leibniz Institute for Financial Research SAFE.
    3. Simone Guercini, 2022. "Scope of heuristics and digitalization: the case of marketing automation," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 21(2), pages 151-164, November.
    4. Nikolai Stein & Jan Meller & Christoph M. Flath, 2018. "Big data on the shop-floor: sensor-based decision-support for manual processes," Journal of Business Economics, Springer, vol. 88(5), pages 593-616, July.
    5. Shivam Gupta & Théo Justy & Shampy Kamboj & Ajay Kumar & Eivind Kristoffersen, 2021. "Big data and firm marketing performance: Findings from knowledge-based view," Post-Print hal-03609916, HAL.
    6. Antonia Köster & Christian Matt & Thomas Hess, 2021. "Do All Roads Lead to Rome? Exploring the Relationship Between Social Referrals, Referral Propensity and Stickiness to Video-on-Demand Websites," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 349-366, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:77136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.