[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/23419.html
   My bibliography  Save this paper

Directional multivariate extremes in environmental phenomena

Author

Listed:
  • Michele, Carlo de
  • Laniado Rodas, Henry
Abstract
Several environmental phenomena can be described by different correlated variables that must be considered jointly in order to be more representative of the nature of these phenomena. For such events, identification of extremes is inappropriate if it is based on marginal analysis. Extremes have usually been linked to the notion of quantile, which is an important tool to analyze risk in the univariate setting. We propose to identify multivariate extremes and analyze environmental phenomena in terms of the directional multivariate quantile, which allows us to analyze the data considering all the variables implied in the phenomena, as well as look at the data in interesting directions that can better describe an environmental catastrophe. Since there are many references in the literature that propose extremes detection based on copula models, we also generalize the copula method by introducing the directional approach. Advantages and disadvantages of the non-parametric proposal that we introduce and the copula methods are provided in the paper. We show with simulated and real data sets how by considering the first principal component direction we can improve the visualization of extremes. Finally, two cases of study are analyzed: a synthetic case of flood risk at a dam (a 3-variable case), and a real case study of sea storms (a 5-variable case).

Suggested Citation

  • Michele, Carlo de & Laniado Rodas, Henry, 2016. "Directional multivariate extremes in environmental phenomena," DES - Working Papers. Statistics and Econometrics. WS 23419, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:23419
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/84ccbe1f-3124-467d-8d62-7ccf54f49041/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laniado Rodas, Henry, 2015. "A Directional Multivariate Value at Risk," DES - Working Papers. Statistics and Econometrics. WS ws1501, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    3. Laniado, Henry & Lillo, Rosa E. & Pellerey, Franco & Romo, Juan, 2012. "Portfolio selection through an extremality stochastic order," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 1-9.
    4. Pellerey, Franco & Laniado Rodas, Henry, 2012. "Portfolio selection through and extremality stochastic order," DES - Working Papers. Statistics and Econometrics. WS ws121812, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Di Bernardino, E. & Fernández-Ponce, J.M. & Palacios-Rodríguez, F. & Rodríguez-Griñolo, M.R., 2015. "On multivariate extensions of the conditional Value-at-Risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 1-16.
    6. Serfling, Robert, 2002. "Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparametric Multivariate Analysis," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 232-247, October.
    7. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    8. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    9. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    10. Areski Cousin & Elena Di Bernadino, 2011. "On Multivariate Extensions of Value-at-Risk," Papers 1111.1349, arXiv.org, revised Apr 2013.
    11. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    12. Cousin, Areski & Di Bernardino, Elena, 2013. "On multivariate extensions of Value-at-Risk," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 32-46.
    13. Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
    14. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    15. Belzunce, F. & Castano, A. & Olvera-Cervantes, A. & Suarez-Llorens, A., 2007. "Quantile curves and dependence structure for bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5112-5129, June.
    16. Laniado Rodas, Henry, 2010. "Multivariate extremality measure," DES - Working Papers. Statistics and Econometrics. WS ws101908, Universidad Carlos III de Madrid. Departamento de Estadística.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    2. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    3. Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
    4. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    5. Beck, Nicholas & Di Bernardino, Elena & Mailhot, Mélina, 2021. "Semi-parametric estimation of multivariate extreme expectiles," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
    7. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    8. Merve Merakli & Simge Kucukyavuz, 2017. "Vector-Valued Multivariate Conditional Value-at-Risk," Papers 1708.01324, arXiv.org.
    9. Shushi, Tomer & Yao, Jing, 2020. "Multivariate risk measures based on conditional expectation and systemic risk for Exponential Dispersion Models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 178-186.
    10. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    11. Di Bernardino, Elena & Rullière, Didier, 2013. "Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 190-205.
    12. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    13. Hélène Cossette & Mélina Mailhot & Étienne Marceau & Mhamed Mesfioui, 2016. "Vector-Valued Tail Value-at-Risk and Capital Allocation," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 653-674, September.
    14. Areski Cousin & Elena Di Bernardino, 2013. "On Multivariate Extensions of Conditional-Tail-Expectation," Working Papers hal-00877386, HAL.
    15. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
    16. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    17. Prékopa, András & Lee, Jinwook, 2018. "Risk tomography," European Journal of Operational Research, Elsevier, vol. 265(1), pages 149-168.
    18. Elena Di Bernardino & Didier Rullière, 2012. "Distortions of multivariate risk measures: a level-sets based approach," Working Papers hal-00756387, HAL.
    19. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    20. Di Bernardino, E. & Fernández-Ponce, J.M. & Palacios-Rodríguez, F. & Rodríguez-Griñolo, M.R., 2015. "On multivariate extensions of the conditional Value-at-Risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 1-16.

    More about this item

    Keywords

    Multivariate directional quantiles;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:23419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.