Seasonal dynamic factor analysis and bootstrap inference : application to electricity market forecasting
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ortega, Jose Antonio & Poncela, Pilar, 2005. "Joint forecasts of Southern European fertility rates with non-stationary dynamic factor models," International Journal of Forecasting, Elsevier, vol. 21(3), pages 539-550.
- Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007.
"Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices,"
Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
- Siem Jan Koopman & Marius Ooms & M. Angeles Carnero, 2005. "Periodic Seasonal Reg-ARFIMA-GARCH Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 05-091/4, Tinbergen Institute.
- Wu, Lilian Shiao-Yen & Pai, Jeffrey S. & Hosking, J.R.M., 1996. "An algorithm for estimating parameters of state-space models," Statistics & Probability Letters, Elsevier, vol. 28(2), pages 99-106, June.
- Crespo Cuaresma, Jesús & Hlouskova, Jaroslava & Kossmeier, Stephan & Obersteiner, Michael, 2004. "Forecasting electricity spot-prices using linear univariate time-series models," Applied Energy, Elsevier, vol. 77(1), pages 87-106, January.
- Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
- Pena, Daniel & Poncela, Pilar, 2004.
"Forecasting with nonstationary dynamic factor models,"
Journal of Econometrics, Elsevier, vol. 119(2), pages 291-321, April.
- Poncela, Pilar, 2000. "Forecasting with nostationary dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS 9959, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Thomas J. Sargent & Christopher A. Sims, 1977.
"Business cycle modeling without pretending to have too much a priori economic theory,"
Working Papers
55, Federal Reserve Bank of Minneapolis.
- Tom Doan, "undated". "RATS program to estimate observable index model from Sargent-Sims(1977)," Statistical Software Components RTZ00126, Boston College Department of Economics.
- Durbin, James & Koopman, Siem Jan, 2012.
"Time Series Analysis by State Space Methods,"
OUP Catalogue,
Oxford University Press,
edition 2, number 9780199641178.
- Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
- Tom Doan, "undated". "SEASONALDLM: RATS procedure to create the matrices for the seasonal component of a DLM," Statistical Software Components RTS00251, Boston College Department of Economics.
- Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
- R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
- Cavanaugh, Joseph E. & Shumway, Robert H., 1996. "On computing the expected Fisher information matrix for state-space model parameters," Statistics & Probability Letters, Elsevier, vol. 26(4), pages 347-355, March.
- Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Ansley, Craig F. & Newbold, Paul, 1980. "Finite sample properties of estimators for autoregressive moving average models," Journal of Econometrics, Elsevier, vol. 13(2), pages 159-183, June.
- Kent D. Wall & David S. Stoffer, 2002. "A State space approach to bootstrapping conditional forecasts in arma models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(6), pages 733-751, November.
- F J Nogales & A J Conejo, 2006. "Electricity price forecasting through transfer function models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 350-356, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- M. Pilar Muñoz & Cristina Corchero & F.-Javier Heredia, 2013. "Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid," International Statistical Review, International Statistical Institute, vol. 81(2), pages 289-306, August.
- Härdle, Wolfgang Karl & Trück, Stefan, 2010. "The dynamics of hourly electricity prices," SFB 649 Discussion Papers 2010-013, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2011. "Forecasting electricity prices and their volatilities using Unobserved Components," Energy Economics, Elsevier, vol. 33(6), pages 1227-1239.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- M. Pilar Muñoz & Cristina Corchero & F.-Javier Heredia, 2013. "Improving Electricity Market Price Forecasting with Factor Models for the Optimal Generation Bid," International Statistical Review, International Statistical Institute, vol. 81(2), pages 289-306, August.
- Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
- Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011.
"Maximum likelihood estimation for dynamic factor models with missing data,"
Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
- B. Jungbacker & S.J. Koopman & M. van Der Wel, 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Post-Print hal-00828980, HAL.
- Dordonnat, Virginie & Koopman, Siem Jan & Ooms, Marius, 2012. "Dynamic factors in periodic time-varying regressions with an application to hourly electricity load modelling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3134-3152.
- Bork, Lasse, 2009.
"Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach,"
Finance Research Group Working Papers
F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
- Bastos, Guadalupe & García-Martos, Carolina, 2017. "Electricity prices forecasting by averaging dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS 24028, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Katarzyna Maciejowska & Rafał Weron, 2015.
"Forecasting of daily electricity prices with factor models: utilizing intra-day and inter-zone relationships,"
Computational Statistics, Springer, vol. 30(3), pages 805-819, September.
- Katarzyna Maciejowska & Rafal Weron, 2013. "Forecasting of daily electricity prices with factor models: Utilizing intra-day and inter-zone relationships," HSC Research Reports HSC/13/11, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- García-Martos, Carolina & Rodríguez, Julio & Sánchez, María Jesús, 2013. "Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities," Applied Energy, Elsevier, vol. 101(C), pages 363-375.
- Katarzyna Maciejowska & Rafal Weron, 2013. "Forecasting of daily electricity spot prices by incorporating intra-day relationships: Evidence form the UK power market," HSC Research Reports HSC/13/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology, revised 15 Apr 2013.
- Luke Mosley & Tak-Shing Chan & Alex Gibberd, 2023. "sparseDFM: An R Package to Estimate Dynamic Factor Models with Sparse Loadings," Papers 2303.14125, arXiv.org.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
- Tobias Hartl & Roland Jucknewitz, 2022.
"Approximate state space modelling of unobserved fractional components,"
Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
- Tobias Hartl & Roland Weigand, 2018. "Approximate State Space Modelling of Unobserved Fractional Components," Papers 1812.09142, arXiv.org, revised May 2020.
- David de Antonio Liedo, 2014. "Nowcasting Belgium," Working Paper Research 256, National Bank of Belgium.
- Weron, Rafal & Misiorek, Adam, 2008.
"Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models,"
International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
- Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," MPRA Paper 10428, University Library of Munich, Germany.
- Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
More about this item
Keywords
Dynamic factor analysis;JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2008-04-12 (Econometrics)
- NEP-ENE-2008-04-12 (Energy Economics)
- NEP-ETS-2008-04-12 (Econometric Time Series)
- NEP-FOR-2008-04-12 (Forecasting)
- NEP-ORE-2008-04-12 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws081406. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.