(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/97-30.html
   My bibliography  Save this paper

Production Functions : The Search for Identification

Author

Listed:
  • Z, Griliches

    (Crest)

  • Jacques Mairesse

    (Crest)

Abstract
Some aspects of the econometric estimation of production functions are discussed, focussing primarily on the issue of simultaneity and reviewing the stream of criticisms of Douglas' work and the response to it. We look in particular at the work that uses panel data on micro data for plants or firms and at some more recent multi-equation extensions of it. We find that researchers, in trying to evade the simultaneity problem, have shifted to the use of thinner and thinner slices of data, exacerbating thereby other problems and misspecifications. We describe the need for better data, especially on product prices at the individual observation level and on relevant cost and demand shifters, and for better behavioral theories which would encompass the large amount of heterogeneity observed at the micro level.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Z, Griliches & Jacques Mairesse, 1997. "Production Functions : The Search for Identification," Working Papers 97-30, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:97-30
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/1997-30.pdf
    File Function: Crest working paper version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hellerstein, Judith K & Neumark, David, 1999. "Sex, Wages, and Productivity: An Empirical Analysis of Israeli Firm-Level Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(1), pages 95-123, February.
    2. repec:cor:louvrp:-12 is not listed on IDEAS
    3. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
    4. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    5. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    6. Klette, Tor Jakob & Griliches, Zvi, 1996. "The Inconsistency of Common Scale Estimators When Output Prices Are Unobserved and Endogenous," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 343-361, July-Aug..
    7. Zvi Griliches, 1998. "Returns to Research and Development Expenditures in the Private Sector," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 49-81, National Bureau of Economic Research, Inc.
    8. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    9. Ariél Pakes & Zvi Griliches, 1984. "Estimating Distributed Lags in Short Panels with an Application to the Specification of Depreciation Patterns and Capital Stock Constructs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 51(2), pages 243-262.
    10. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    11. Jacques Mairesse & Zvi Griliches, 1988. "Heterogeneity in Panel Data: Are There Stable Production Functions?," NBER Working Papers 2619, National Bureau of Economic Research, Inc.
    12. Yair Mundlak, 1961. "Empirical Production Function Free of Management Bias," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 43(1), pages 44-56.
    13. Hall, Robert E, 1988. "The Relation between Price and Marginal Cost in U.S. Industry," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 921-947, October.
    14. Eden, Benjamin & Griliches, Zvi, 1993. "Productivity, Market Power, and Capacity Utilization When Spot Markets Are Complete," American Economic Review, American Economic Association, vol. 83(2), pages 219-223, May.
    15. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    16. Zvi Griliches & Jacques Mairesse, 1981. "Productivity and R and D at the Firm Level," NBER Working Papers 0826, National Bureau of Economic Research, Inc.
    17. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    18. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
    19. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    20. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 26-29, January.
    21. David Durand, 1937. "Some Thoughts on Marginal Productivity, with Special Reference to Professor Douglas' Analysis," Journal of Political Economy, University of Chicago Press, vol. 45(6), pages 740-740.
    22. Henry Schultz, 1929. "Marginal Productivity and the General Pricing Process," Journal of Political Economy, University of Chicago Press, vol. 37(5), pages 505-505.
    23. Griliches, Zvi, 1977. "Estimating the Returns to Schooling: Some Econometric Problems," Econometrica, Econometric Society, vol. 45(1), pages 1-22, January.
    24. Keane, Michael P & Runkle, David E, 1992. "On the Estimation of Panel-Data Models with Serial Correlation When Instruments Are Not Strictly Exogenous," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 1-9, January.
    25. Tor Jakob Klette, 1994. "Estimating Price- Cost Margins and Scale Economies from a Panel of Microdata," Discussion Papers 130, Statistics Norway, Research Department.
    26. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    27. ZELLNER, Arnold & KMENTA, Jan & DREZE, Jacques H., 1966. "Specification and estimation of Cobb-Douglas production function models," LIDAM Reprints CORE 12, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    28. Joshua D. Angrist & Guido W. Imbens & D.B. Rubin, 1993. "Identification of Causal Effects Using Instrumental Variables," NBER Technical Working Papers 0136, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    2. Simon Pröll & Giannis Karagiannis & Klaus Salhofer, 2019. "Advertising and Markups: The Case of the German Brewing Industry," Working Papers 732019, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    3. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    4. Yuriy Gorodnichenko, 2007. "Using Firm Optimization to Evaluate and Estimate Returns to Scale," NBER Working Papers 13666, National Bureau of Economic Research, Inc.
    5. Klette, Tor Jakob & Griliches, Zvi, 1996. "The Inconsistency of Common Scale Estimators When Output Prices Are Unobserved and Endogenous," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(4), pages 343-361, July-Aug..
    6. repec:zbw:inwedp:732019 is not listed on IDEAS
    7. Pröll, Simon & Salhofer, Klaus & Karagiannis, Giannis, 2019. "Advertising and Markups: The Case of the German Brewing Industry," Discussion Papers DP-73-2019, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    8. Ornaghi, Carmine, 2006. "Spillovers in product and process innovation: Evidence from manufacturing firms," International Journal of Industrial Organization, Elsevier, vol. 24(2), pages 349-380, March.
    9. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    10. Dobbelaere, Sabien & Kiyota, Kozo & Mairesse, Jacques, 2015. "Product and labor market imperfections and scale economies: Micro-evidence on France, Japan and the Netherlands," Journal of Comparative Economics, Elsevier, vol. 43(2), pages 290-322.
    11. Ugur, Mehmet & Trushin, Eshref & Solomon, Edna & Guidi, Francesco, 2016. "R&D and productivity in OECD firms and industries: A hierarchical meta-regression analysis," Research Policy, Elsevier, vol. 45(10), pages 2069-2086.
    12. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    13. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    14. Cassiman, Bruno & ,, 2013. "Profiting from Innovation: Firm Level Evidence on Markups," CEPR Discussion Papers 9703, C.E.P.R. Discussion Papers.
    15. Petrick, Martin & Kloss, Mathias, 2018. "Identifying Agricultural Factor Productivity from Micro-data: A Review of Approaches with an Application to EU Countries," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 67(2), June.
    16. Petrick, Martin & Kloss, Mathias, 2013. "Identifying Factor Productivity from Micro-data: The case of EU agriculture," Working papers 144004, Factor Markets, Centre for European Policy Studies.
    17. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    18. A. Abigail Payne & Aloysius Siow, 1998. "Estimating the Effects of Federal Research Funding on Universities using Alumni Representation on Congressional Appropriations Committees," Working Papers siow-99-02, University of Toronto, Department of Economics.
    19. Carmine Ornaghi, 2006. "Assessing the effects of measurement errors on the estimation of production functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 879-891.
    20. Hall, Bronwyn H. & Mairesse, Jacques, 1995. "Exploring the relationship between R&D and productivity in French manufacturing firms," Journal of Econometrics, Elsevier, vol. 65(1), pages 263-293, January.
    21. repec:zbw:iamodp:271870 is not listed on IDEAS
    22. Okada, Yosuke, 2005. "Competition and productivity in Japanese manufacturing industries," Journal of the Japanese and International Economies, Elsevier, vol. 19(4), pages 586-616, December.

    More about this item

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:97-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.