[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/crs/wpaper/2017-68.html
   My bibliography  Save this paper

On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator

Author

Listed:
  • Christophe Chesneau

    (Université de Caen; LMNO)

  • Fabien Navarro

    (CREST;ENSAI)

Abstract
In this paper we provide a theoretical contribution to the pointwise mean squared error of an adaptive multidimensional term-by-term thresholding wavelet estimator. A general result exhibiting fast rates of convergence under mild assumptions on the model is proved. It can be applied for a wide range of nonparametric models including possible dependent observations. We give applications of this result for the nonparametric regression function estimation problem (with random design) and the conditional density estimation problem

Suggested Citation

  • Christophe Chesneau & Fabien Navarro, 2017. "On the pointwise mean squared error of a multidimensional term-by-term thresholding wavelet estimator," Working Papers 2017-68, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:2017-68
    as

    Download full text from publisher

    File URL: http://crest.science/RePEc/wpstorage/2017-68.pdf
    File Function: CREST working paper version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Abramovich & Claudia Angelini & Daniela Canditiis, 2007. "Pointwise optimality of Bayesian wavelet estimators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(3), pages 425-434, September.
    2. Yogendra P. Chaubey & Christophe Chesneau & Esmaeil Shirazi, 2013. "Wavelet-based estimation of regression function for dependent biased data under a given random design," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(1), pages 53-71, March.
    3. Chesneau, Christophe & Fadili, Jalal & Maillot, Bertrand, 2015. "Adaptive estimation of an additive regression function from weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 77-94.
    4. Young Truong & Prakash Patil, 2001. "Asymptotics for Wavelet Based Estimates of Piecewise Smooth Regression for Stationary Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(1), pages 159-178, March.
    5. A. Antoniadis, 1997. "Wavelets in statistics: A review," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 97-130, August.
    6. Chicken, Eric & Cai, T. Tony, 2005. "Block thresholding for density estimation: local and global adaptivity," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 76-106, July.
    7. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    8. Vyacheslav Vasiliev, 2014. "A truncated estimation method with guaranteed accuracy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 141-163, February.
    9. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huijun Guo & Youming Liu, 2019. "Regression estimation under strong mixing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 553-576, June.
    2. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    3. Junke Kou & Youming Liu, 2018. "Wavelet regression estimations with strong mixing data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 667-688, December.
    4. Bulla, Ingo & Chesneau, Christophe & Navarro, Fabien & Mark, Tanya, 2015. "A note on the adaptive estimation of a bi-dimensional density in the case of knowledge of the copula density," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 6-13.
    5. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    6. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    7. Beran, Jan & Shumeyko, Yevgen, 2012. "Bootstrap testing for discontinuities under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 322-347.
    8. Chesneau, Christophe & Fadili, Jalal & Maillot, Bertrand, 2015. "Adaptive estimation of an additive regression function from weakly dependent data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 77-94.
    9. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    10. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    12. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    13. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    14. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    15. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    16. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    17. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    18. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    20. repec:bgu:wpaper:0608 is not listed on IDEAS
    21. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2017-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General (email available below). General contact details of provider: https://edirc.repec.org/data/crestfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.