[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/8209.html
   My bibliography  Save this paper

Testing for Sufficient Information in Structural VARs

Author

Listed:
  • Forni, Mario
  • Gambetti, Luca
Abstract
We derive necessary and sufficient conditions under which a set of variables is informationally sufficient, i.e. it contains enough information to estimate the structural shocks with a VAR model. Based on such conditions, we suggest a procedure to test for informational sufficiency. Moreover, we show how to amend the VAR if informational sufficiency is rejected. We apply our procedure to a VAR including TFP, unemployment and per-capita hours worked. We find that the three variables are not informationally sufficient. When adding missing information, the effects of technology shocks change dramatically.

Suggested Citation

  • Forni, Mario & Gambetti, Luca, 2011. "Testing for Sufficient Information in Structural VARs," CEPR Discussion Papers 8209, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:8209
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP8209
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephanie Schmitt‐Grohé & Martín Uribe, 2012. "What's News in Business Cycles," Econometrica, Econometric Society, vol. 80(6), pages 2733-2764, November.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    3. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Lippi, Marco & Reichlin, Lucrezia, 1994. "VAR analysis, nonfundamental representations, blaschke matrices," Journal of Econometrics, Elsevier, vol. 63(1), pages 307-325, July.
    6. Luca Gambetti, 2010. "Fiscal Policy, Foresight and the Trade Balance in the U.S," Working Papers 505, Barcelona School of Economics.
    7. Gelper, Sarah & Croux, Christophe, 2007. "Multivariate out-of-sample tests for Granger causality," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3319-3329, April.
    8. Eric M. Leeper & Todd B. Walker & Shu-Chun Susan Yang, 2008. "Fiscal Foresight: Analytics and Econometrics," NBER Working Papers 14028, National Bureau of Economic Research, Inc.
    9. Forni, Mario & Gambetti, Luca, 2010. "Fiscal Foresight and the Effects of Goverment Spending," CEPR Discussion Papers 7840, C.E.P.R. Discussion Papers.
    10. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    11. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    12. Eric Leeper & Todd Walker, 2011. "Information Flows and News Driven Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 55-71, January.
    13. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    14. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    15. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    16. Eric M. Leeper & Todd B. Walker & Shu-Chun Susan Yang, 2008. "Fiscal Foresight: Analytics and Econometrics," NBER Working Papers 14028, National Bureau of Economic Research, Inc.
    17. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    18. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    19. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    2. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    3. Emily Anderson & Atsushi Inoue & Barbara Rossi, 2016. "Heterogeneous Consumers and Fiscal Policy Shocks," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(8), pages 1877-1888, December.
    4. Gubler, Matthias & Hertweck, Matthias S., 2013. "Commodity price shocks and the business cycle: Structural evidence for the U.S," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 324-352.
    5. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    6. Silvia Miranda-Agrippino & Sinem Hacioglu Hoke & Kristina Bluwstein, 2018. "When Creativity Strikes: News Shocks and Business Cycle Fluctuations," Discussion Papers 1823, Centre for Macroeconomics (CFM).
    7. Karen Davtyan, 2016. "Interrelation among Economic Growth, Income Inequality, and Fiscal Performance: Evidence from Anglo-Saxon Countries," Hacienda Pública Española / Review of Public Economics, IEF, vol. 217(2), pages 37-66, June.
    8. Miranda-Agrippino, Silvia & Hacıoğlu Hoke, Sinem & Bluwstein, Kristina, 2020. "Patents, News, and Business Cycles," CEPR Discussion Papers 15062, C.E.P.R. Discussion Papers.
    9. Colin Ellis & Haroon Mumtaz & Pawel Zabczyk, 2014. "What Lies Beneath? A Time‐varying FAVAR Model for the UK Transmission Mechanism," Economic Journal, Royal Economic Society, vol. 0(576), pages 668-699, May.
    10. Filippo Ferroni & Benjamin Klaus, 2015. "Euro Area business cycles in turbulent times: convergence or decoupling?," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3791-3815, July.
    11. repec:ira:wpaper:201405 is not listed on IDEAS
    12. Zens, Gregor & Böck, Maximilian & Zörner, Thomas O., 2020. "The heterogeneous impact of monetary policy on the US labor market," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    13. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2017. "Where do jobs go when oil prices drop?," Energy Economics, Elsevier, vol. 64(C), pages 469-482.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    2. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    3. Laumer, Sebastian & Violaris, Andreas-Entony, 2024. "Unconventional monetary policy and policy foresight," Journal of Economic Dynamics and Control, Elsevier, vol. 164(C).
    4. Mario Forni & Luca Gambetti, 2010. "Fiscal Foresight and the Effects of Government Spending," UFAE and IAE Working Papers 851.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    5. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    6. Luca Gambetti, 2010. "Fiscal Policy, Foresight and the Trade Balance in the U.S," UFAE and IAE Working Papers 852.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    7. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Review of Nonfundamentalness and Identification in Structural VAR Models," LEM Papers Series 2007/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    8. Luciana Juvenal & Ivan Petrella, 2015. "Speculation in the Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 621-649, June.
    9. Mario Forni & Luca Gambetti, 2010. "Macroeconomic Shocks and the Business Cycle: Evidence from a Structural Factor Model," Center for Economic Research (RECent) 040, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    10. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    11. Luca Sala & Luca Gambetti & Mario Forni, 2016. "VAR Information and the Empirical Validation of DSGE Models," 2016 Meeting Papers 260, Society for Economic Dynamics.
    12. Ricco, Giovanni & Ellahie, Atif, 2012. "Government Spending Reloaded: Fundamentalness and Heterogeneity in Fiscal SVARs," MPRA Paper 42105, University Library of Munich, Germany.
    13. Pallara, Kevin, 2016. "The dynamic effects of government spending: a FAVAR approach," MPRA Paper 92283, University Library of Munich, Germany.
    14. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    15. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
    16. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    17. Eric M. Leeper & Alexander W. Richter & Todd B. Walker, 2012. "Quantitative Effects of Fiscal Foresight," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 115-144, May.
    18. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    19. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    20. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.

    More about this item

    Keywords

    Favar models; Information; Non-fundamentalness; Structural var; Technology shocks.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:8209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.