Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models
Author
Suggested Citation
Download full text from publisher
Other versions of this item:
- Luc Bauwens & Edoardo Otranto, 2023. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," Journal of Financial Econometrics, Oxford University Press, vol. 21(4), pages 1376-1401.
- Bauwens, Luc & Otranto, Edoardo, 2022. "Modeling Realized Covariance Matrices: A Class of Hadamard Exponential Models," LIDAM Reprints CORE 3202, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Otranto, Edoardo, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," LIDAM Discussion Papers CORE 2020034, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
References listed on IDEAS
- Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
- Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006.
"Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
- Cappiello, Lorenzo & Engle, Robert F. & Sheppard, Kevin, 2003. "Asymmetric dynamics in the correlations of global equity and bond returns," Working Paper Series 204, European Central Bank.
- Tom Doan, "undated". "RATS program to estimate various forms of DCC GARCH models," Statistical Software Components RTZ00174, Boston College Department of Economics.
- Bauwens, Luc & Otranto, Edoardo, 2020.
"Nonlinearities and regimes in conditional correlations with different dynamics,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 496-522.
- BAUWENS Luc, & OTRANTO Edoardo,, 2018. "Nonlinearities and regimes in conditional correlations with different dynamics," LIDAM Discussion Papers CORE 2018009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Otranto, Edoardo, 2020. "Nonlinearities and regimes in conditional correlations with different dynamics," LIDAM Reprints CORE 3128, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- L. Bauwens & E. Otranto, 2018. "Nonlinearities and Regimes in Conditional Correlations with Different Dynamics," Working Paper CRENoS 201803, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Luc Bauwens & Edoardo Otranto, 2016.
"Modeling the Dependence of Conditional Correlations on Market Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 254-268, April.
- Luc Bauwens & Edoardo Otranto, 2016. "Modeling the dependence of conditional correlations on market volatility," LIDAM Reprints CORE 2924, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013.
"On loss functions and ranking forecasting performances of multivariate volatility models,"
Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
- Sébastien Laurent & Jeroen Rombouts & Francesco Violente, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," CIRANO Working Papers 2009s-45, CIRANO.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Kevin Sheppard & Wen Xu, 2019. "Factor High-Frequency-Based Volatility (HEAVY) Models," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 33-65.
- Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003.
"Choosing the Best Volatility Models: The Model Confidence Set Approach,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 839-861, December.
- Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the best volatility models: the model confidence set approach," FRB Atlanta Working Paper 2003-28, Federal Reserve Bank of Atlanta.
- Peter Hansen & Asger Lunde & James M. Nason, 2003. "Choosing the Best Volatility Models:The Model Confidence Set Approach," Working Papers 2003-05, Brown University, Department of Economics.
- Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
- Adam Clements & Ayesha Scott & Annastiina Silvennoinen, 2019. "Volatility-dependent correlations: further evidence of when, where and how," Empirical Economics, Springer, vol. 57(2), pages 505-540, August.
- Gian Piero Aielli, 2013. "Dynamic Conditional Correlation: On Properties and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 282-299, July.
- Oh, Dong Hwan & Patton, Andrew J., 2016.
"High-dimensional copula-based distributions with mixed frequency data,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
- Dong Hwan Oh & Andrew J. Patton, 2015. "High-Dimensional Copula-Based Distributions with Mixed Frequency Data," Finance and Economics Discussion Series 2015-50, Board of Governors of the Federal Reserve System (U.S.).
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014.
"Multivariate rotated ARCH models,"
Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH Models," Economics Papers 2012-W01, Economics Group, Nuffield College, University of Oxford.
- Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Scholarly Articles 34650305, Harvard University Department of Economics.
- Diaa Noureldin & Neil Shephard & Kevin Sheppard, 2012. "Multivariate Rotated ARCH models," Economics Series Working Papers 594, University of Oxford, Department of Economics.
- Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990.
"Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills,"
Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
- Robert F. Engle & Victor Ng & Michael Rothschild, 1988. "Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills," NBER Technical Working Papers 0065, National Bureau of Economic Research, Inc.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2012.
"The conditional autoregressive Wishart model for multivariate stock market volatility,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 211-223.
- Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2010. "The conditional autoregressive wishart model for multivariate stock market volatility," Economics Working Papers 2010-07, Christian-Albrechts-University of Kiel, Department of Economics.
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & STORTI, Giuseppe & VIOLANTE, Francesco, 2012. "Dynamic conditional correlation models for realized covariance matrices," LIDAM Discussion Papers CORE 2012060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016.
"Forecasting Comparison of Long Term Component Dynamic Models for Realized Covariance Matrices,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 103-134.
- BAUWENS, Luc & BRAIONE, Manuela & STORTI, Giuseppe, 2014. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Discussion Papers CORE 2014053, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Manuela Braione & Giuseppe Storti, 2016. "Forecasting comparison of long term component dynamic models for realized covariance matrices," LIDAM Reprints CORE 2923, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Engle, Robert F & Sheppard, Kevin K, 2001.
"Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH,"
University of California at San Diego, Economics Working Paper Series
qt5s2218dp, Department of Economics, UC San Diego.
- Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
- Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bauwens, Luc & Xu, Yongdeng, 2023.
"The contribution of realized covariance models to the economic value of volatility timing,"
Cardiff Economics Working Papers
E2023/20, Cardiff University, Cardiff Business School, Economics Section.
- Bauwens, Luc & Xu, Yongdeng, 2023. "The contribution of realized covariance models to the economic value of volatility timing," LIDAM Discussion Papers CORE 2023018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Otranto, Edoardo, 2023. "Realized Covariance Models with Time-varying Parameters and Spillover Effects," LIDAM Discussion Papers CORE 2023019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bauwens, Luc & Xu, Yongdeng, 2023.
"DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 938-955.
- Bauwens, Luc & Xu, Yongdeng, 2019. "DCC and DECO-HEAVY: a multivariate GARCH model based on realized variances and correlations," Cardiff Economics Working Papers E2019/5, Cardiff University, Cardiff Business School, Economics Section, revised Aug 2021.
- Caporin, Massimiliano & McAleer, Michael, 2014.
"Robust ranking of multivariate GARCH models by problem dimension,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
- Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Documentos de Trabajo del ICAE 2012-06, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Apr 2012.
- Caporin, M. & McAleer, M.J., 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Econometric Institute Research Papers EI2012-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018.
"MGARCH models: Trade-off between feasibility and flexibility,"
International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
- Almeida, Daniel de & Hotta, Luiz, 2015. "MGARCH models: tradeoff between feasibility and flexibility," DES - Working Papers. Statistics and Econometrics. WS ws1516, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- BAUWENS Luc, & XU Yongdeng,, 2019. "DCC-HEAVY: A multivariate GARCH model based on realized variances and correlations," LIDAM Discussion Papers CORE 2019025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
- Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2020. "Multivariate leverage effects and realized semicovariance GARCH models," Journal of Econometrics, Elsevier, vol. 217(2), pages 411-430.
- Massimiliano Caporin & Michael McAleer, 2011.
"Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation,"
Working Papers in Economics
11/23, University of Canterbury, Department of Economics and Finance.
- Michael McAleer & Massimiliano Caporin, 2011. "Ranking Multivariate GARCH Models by Problem Dimension:An Empirical Evaluation," KIER Working Papers 778, Kyoto University, Institute of Economic Research.
- Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Documentos de Trabajo del ICAE 2011-20, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, Luc & Otranto, Edoardo, 2023. "Realized Covariance Models with Time-varying Parameters and Spillover Effects," LIDAM Discussion Papers CORE 2023019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Massimiliano Caporin & Michael McAleer, 2010.
"Ranking Multivariate GARCH Models by Problem Dimension,"
CARF F-Series
CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," "Marco Fanno" Working Papers 0124, Dipartimento di Scienze Economiche "Marco Fanno".
- Caporin, M. & McAleer, M.J., 2010. "Ranking multivariate GARCH models by problem dimension," Econometric Institute Research Papers EI 2010-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CIRJE F-Series CIRJE-F-742, CIRJE, Faculty of Economics, University of Tokyo.
- Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 10/34, University of Canterbury, Department of Economics and Finance.
- Aielli, Gian Piero & Caporin, Massimiliano, 2014.
"Variance clustering improved dynamic conditional correlation MGARCH estimators,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
- Gian Piero Aielli & Massimiliano Caporin, 2011. "Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators," "Marco Fanno" Working Papers 0133, Dipartimento di Scienze Economiche "Marco Fanno".
- Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016.
"Estimation and empirical performance of non-scalar dynamic conditional correlation models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
- BAUWENS, Luc & GRIGORYEVA, Lyudmila & ORTEGA, Juan-Pablo, 2014. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," LIDAM Discussion Papers CORE 2014012, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Massimiliano Caporin & Michael McAleer, 2013.
"Ten Things You Should Know about the Dynamic Conditional Correlation Representation,"
Econometrics, MDPI, vol. 1(1), pages 1-12, June.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things you should know about the Dynamic Conditional Correlation Representation," Tinbergen Institute Discussion Papers 13-078/III, Tinbergen Institute.
- Caporin, M. & McAleer, M.J., 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Econometric Institute Research Papers EI 2013-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Documentos de Trabajo del ICAE 2013-21, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Working Papers in Economics 13/21, University of Canterbury, Department of Economics and Finance.
- Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," KIER Working Papers 870, Kyoto University, Institute of Economic Research.
- Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
- Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Fiszeder, Piotr & Fałdziński, Marcin, 2019. "Improving forecasts with the co-range dynamic conditional correlation model," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024.
"Asymmetric Models for Realized Covariances,"
LIDAM Discussion Papers CORE
2024024, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Dzuverovic, Emilija & Hafner, Christian, 2024. "Asymmetric Models for Realized Covariances," LIDAM Discussion Papers ISBA 2024022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012.
"On the forecasting accuracy of multivariate GARCH models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
- Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2010. "On the Forecasting Accuracy of Multivariate GARCH Models," Cahiers de recherche 1021, CIRPEE.
- LAURENT, Sébastien & ROMBOUTS, Jeroen V. K. & VIOLANTE, Francesco, 2010. "On the forecasting accuracy of multivariate GARCH models," LIDAM Discussion Papers CORE 2010025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
More about this item
Keywords
realized covariances; dynamic covariances and correlations; Hadamard exponential matri;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-12-07 (Econometrics)
- NEP-ETS-2020-12-07 (Econometric Time Series)
- NEP-ORE-2020-12-07 (Operations Research)
- NEP-RMG-2020-12-07 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cns:cnscwp:202007. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CRENoS (email available below). General contact details of provider: https://edirc.repec.org/data/crenoit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.