Forecasting a long memory process subject to structural breaks
Author
(This abstract was borrowed from another version of this item.)
Suggested Citation
Note: In : Journal of Econometrics, 177(2), 171-184, 2013
Download full text from publisher
To our knowledge, this item is not available for download. To find whether it is available, there are three options:1. Check below whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.
Other versions of this item:
- Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
- WANG, Shin-Huei & BAUWENS, Luc & HSIAO, Cheng, 2012. "Forecasting long memory processes subject to structural breaks," LIDAM Discussion Papers CORE 2012048, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
References listed on IDEAS
- Fleurbaey,Marc & Maniquet,François, 2011.
"A Theory of Fairness and Social Welfare,"
Cambridge Books,
Cambridge University Press, number 9780521715348, September.
- Fleurbaey,Marc & Maniquet,François, 2011. "A Theory of Fairness and Social Welfare," Cambridge Books, Cambridge University Press, number 9780521887427, September.
- Pesaran, M. Hashem & Timmermann, Allan, 2005.
"Small sample properties of forecasts from autoregressive models under structural breaks,"
Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
- Allan Timmermann & M. Hashem Pesaran, 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," CESifo Working Paper Series 990, CESifo.
- Pesaran, M. Hashem & Timmermann, Allan, 2004. "Small Sample Properties of Forecasts From Autoregressive Models Under Structural Breaks," CEPR Discussion Papers 4401, C.E.P.R. Discussion Papers.
- Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.
- Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
- Jushan Bai & Pierre Perron, 1998.
"Estimating and Testing Linear Models with Multiple Structural Changes,"
Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
- Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Universite de Montreal, Departement de sciences economiques.
- Perron, P. & Bai, J., 1995. "Estimating and Testing Linear Models with Multiple Structural Changes," Cahiers de recherche 9552, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
- BEDAYO, Mikel & MAULEON, Ana & VANNETELBOSCH, Vincent, 2012.
"Bargaining and delay in trading networks,"
LIDAM Discussion Papers CORE
2012046, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bedayo, Mikel & Mauleon, Ana & Vannetelbosch, Vincent, 2013. "Bargaining and Delay in Trading Networks," Climate Change and Sustainable Development 146288, Fondazione Eni Enrico Mattei (FEEM).
- Mikel Bedayo & Ana Mauleon & Vincent Vannetelbosch, 2013. "Bargaining and Delay in Trading Networks," Working Papers 2013.01, Fondazione Eni Enrico Mattei.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- CARPANTIER, Jean-François & SAPATA, Christelle, 2012.
"Unfair inequalities in France: A regional comparison,"
LIDAM Discussion Papers CORE
2012038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jean-François Carpantier & Christelle Sapata, 2012. "Unfair inequalities in France: A regional comparison," Working Papers hal-01821150, HAL.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Miguel Jara & Dimitri Paolini & Juan Dios Tena Horrillo, 2015.
"Management Efficiency in Football: An Empirical Analysis of Two Extreme Cases,"
Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 36(5), pages 286-298, July.
- M. Jara & D. Paolini, 2012. "Management Efficiency in Football: An Empirical Analysis of two Extreme Cases," Working Paper CRENoS 201222, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Miguel JARA & Dimitri PAOLINI & Juan de Dios TENA HORRILLO, 2015. "Management efficiency in footbal: an empirical analysis of two extreme cases," LIDAM Reprints CORE 2802, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- JARA, miguel & Paolini, DIMITRI & TENA, J.D., 2012. "Management efficiency in football: an empirical analysis of two extreme cases," LIDAM Discussion Papers CORE 2012044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bollerslev, Tim & Ole Mikkelsen, Hans, 1996.
"Modeling and pricing long memory in stock market volatility,"
Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
- Tom Doan, "undated". "RATS program to replicate Bollerslev-Mikkelson(1996) FIEGARCH models," Statistical Software Components RTZ00173, Boston College Department of Economics.
- Baillie, Richard T. & Morana, Claudio, 2009.
"Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
- Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
- Richard T. Baillie & Claudio Morana, 2014. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
- Peter Reinhard Hansen & Allan Timmermann, 2012.
"Choice of Sample Split in Out-of-Sample Forecast Evaluation,"
CREATES Research Papers
2012-43, Department of Economics and Business Economics, Aarhus University.
- Peter Reinhard HANSEN & Allan TIMMERMANN, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," Economics Working Papers ECO2012/10, European University Institute.
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Duranton, Gilles & Martin, Philippe & Mayer, Thierry & Mayneris, Florian, 2010.
"The Economics of Clusters: Lessons from the French Experience,"
OUP Catalogue,
Oxford University Press, number 9780199592203.
- Florian Mayneris & Gilles Duranton & Thierry Mayer & Philippe Martin, 2010. "The economics of clusters, lessons from the french experience," Post-Print hal-03394071, HAL.
- Florian Mayneris & Gilles Duranton & Thierry Mayer & Philippe Martin, 2010. "The economics of clusters, lessons from the french experience," PSE-Ecole d'économie de Paris (Postprint) hal-03394071, HAL.
- Florian Mayneris & Gilles Duranton & Thierry Mayer & Philippe Martin, 2010. "The economics of clusters, lessons from the french experience," SciencePo Working papers Main hal-03394071, HAL.
- Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010.
"Long memory versus structural breaks in modeling and forecasting realized volatility,"
Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
- Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
- Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
- D. Poskitt, 2007. "Autoregressive approximation in nonstandard situations: the fractionally integrated and non-invertible cases," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 697-725, December.
- Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Granger, Clive W. J. & Terasvirta, Timo, 1999.
"A simple nonlinear time series model with misleading linear properties,"
Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
- Granger, Clive W.J. & Teräsvirta, Timo, 1998. "A simple nonlinear time series model with misleading linear properties," SSE/EFI Working Paper Series in Economics and Finance 237, Stockholm School of Economics.
- Hirotugu Akaike, 1969. "Power spectrum estimation through autoregressive model fitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 407-419, December.
- Hyung, Namwon & Franses, Philip Hans & Penm, Jack, 2006.
"Structural breaks and long memory in US inflation rates: Do they matter for forecasting?,"
Research in International Business and Finance, Elsevier, vol. 20(1), pages 95-110, March.
- Hyung, N. & Franses, Ph.H.B.F., 2001. "Structural breaks and long memory in US inflation rates: do they matter for forecasting?," Econometric Institute Research Papers EI 2001-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Clements,Michael & Hendry,David, 1998.
"Forecasting Economic Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521634809.
- Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
- Hidalgo, Javier & Robinson, Peter M., 1996. "Testing for structural change in a long-memory environment," Journal of Econometrics, Elsevier, vol. 70(1), pages 159-174, January.
- Jos van Bommel & Jose Penalva, 2012.
"The Governance of Perpetual Financial Intermediaries,"
DEM Discussion Paper Series
12-10, Department of Economics at the University of Luxembourg.
- PICARD, Pierre & RUSLI, Ridwan D., 2012. "State owned firms: private debt, cost revelation and welfare," LIDAM Discussion Papers CORE 2012047, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Berardino Cesi & Dimitri Paolini, 2014.
"Peer Group and Distance: When Widening University Participation is Better,"
Manchester School, University of Manchester, vol. 82, pages 110-132, December.
- CESI, Berardino & PAOLINI, dimitri, 2012. "Peer group and distance: when widening university participation is better," LIDAM Discussion Papers CORE 2012042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
- ROELS, Guillaume & CHEVALIER, Philippe & WEI, Ying, 2012. "United we stand? Coordinating capacity investment and allocation in joint ventures," LIDAM Discussion Papers CORE 2012045, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Christensen, Bent Jesper & Nielsen, Morten Orregaard, 2006.
"Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting,"
Journal of Econometrics, Elsevier, vol. 133(1), pages 343-371, July.
- Bent Jesper Christensen & Morten Ø. Nielsen, "undated". "Semiparametric Analysis of Stationary Fractional Cointegration and the Implied-Realized Volatility Relation in High-Frequency Options Data," Economics Working Papers 2001-4, Department of Economics and Business Economics, Aarhus University.
- Nunes, Luis C. & Kuan, Chung-Ming & Newbold, Paul, 1995. "Spurious Break," Econometric Theory, Cambridge University Press, vol. 11(4), pages 736-749, August.
- Gaertner,Wulf & Schokkaert,Erik, 2011. "Empirical Social Choice," Cambridge Books, Cambridge University Press, number 9781107013940, September.
- DUFAYS, Arnaud, 2012. "Infinite-state Markov-switching for dynamic volatility and correlation models," LIDAM Discussion Papers CORE 2012043, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
- Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Dynamics of variance risk premia: A new model for disentangling the price of risk," Journal of Econometrics, Elsevier, vol. 217(2), pages 312-334.
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Bataa, Erdenebat & Izzeldin, Marwan & Osborn, Denise R., 2016.
"Changes in the global oil market,"
Energy Economics, Elsevier, vol. 56(C), pages 161-176.
- Erdenebat Bataa & Marwan Izzeldin & Denise Osborn, 2015. "Changes in the global oil market," Working Papers 75761696, Lancaster University Management School, Economics Department.
- Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
- Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
- Caporin, Massimiliano & Velo, Gabriel G., 2015. "Realized range volatility forecasting: Dynamic features and predictive variables," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 98-112.
- Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
- Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Asai, Manabu & Chang, Chia-Lin & McAleer, Michael, 2022. "Realized matrix-exponential stochastic volatility with asymmetry, long memory and higher-moment spillovers," Journal of Econometrics, Elsevier, vol. 227(1), pages 285-304.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:wyi:journl:002213 is not listed on IDEAS
- Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
- Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018.
"Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks,"
Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
- Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Post-Print hal-01982032, HAL.
- Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
- Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
- Andersen, Torben G. & Varneskov, Rasmus T., 2022.
"Testing for parameter instability and structural change in persistent predictive regressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
- Torben G. Andersen & Rasmus T. Varneskov, 2021. "Testing for Parameter Instability and Structural Change in Persistent Predictive Regressions," NBER Working Papers 28570, National Bureau of Economic Research, Inc.
- Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010.
"Long memory versus structural breaks in modeling and forecasting realized volatility,"
Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
- Kyongwook Choi & Wei-Choun Yu & Eric Zivot, 2008. "Long Memory versus Structural Breaks in Modeling and Forecasting Realized Volatility," Working Papers UWEC-2008-20-FC, University of Washington, Department of Economics.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- NESTEROV, Yurii & NEMIROVSKI, Arkadi, 2012. "Finding the stationary states of Markov chains by iterative methods," LIDAM Discussion Papers CORE 2012058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
- Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
- Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Proietti, Tommaso, 2014.
"Exponential Smoothing, Long Memory and Volatility Prediction,"
MPRA Paper
57230, University Library of Munich, Germany.
- Tommaso Proietti, 2015. "Exponential Smoothing, Long Memory and Volatility Prediction," CREATES Research Papers 2015-51, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Lu, Yang K. & Perron, Pierre, 2010.
"Modeling and forecasting stock return volatility using a random level shift model,"
Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
- Yang K. Lu & Pierre Perron, 2008. "Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model," Boston University - Department of Economics - Working Papers Series wp2008-012, Boston University - Department of Economics.
- Baillie, Richard T. & Morana, Claudio, 2009.
"Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach,"
Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
- Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
- Richard T. Baillie & Claudio Morana, 2014. "Modeling Long Memory and Structural Breaks in Conditional Variances: An Adaptive FIGARCH Approach," Working Papers 593, Queen Mary University of London, School of Economics and Finance.
- Zhongjun Qu & Pierre Perron, 2008. "A Stochastic Volatility Model with Random Level Shifts: Theory and Applications to S&P 500 and NASDAQ Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-007, Boston University - Department of Economics.
More about this item
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2574. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.