[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cfr/cefirw/w0070.html
   My bibliography  Save this paper

Trade intensity in the Russian stock market:dynamics, distribution and determinants

Author

Listed:
  • Stanislav Anatolyev

    (NES)

  • Dmitry Shakin
Abstract
We investigate the distribution and evolution of intertrade durations for frequently traded stocks at the Moscow Interbank Currency Exchange. We use a flexible econometric model based on ARMA and GARCH which, when coupled with a certain class of distributions that allow for skewness and slim-tailedness, adequately captures the characteristics of conditional distribution of durations for Russian stocks, and is able to generate high quality density forecasts. We also analyze what factors determine the dynamics of logdurations and in which way. The results in particular indicate that the Russian market is characterized by aggressive informed traders and timid liquidity traders, and that the participants react evenly to upward and downward short-run price trends.

Suggested Citation

  • Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).
  • Handle: RePEc:cfr:cefirw:w0070
    as

    Download full text from publisher

    File URL: http://www.cefir.ru/papers/WP70Anatolyev_Shakin.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernd Hayo & Ali M. Kutan, 2005. "The impact of news, oil prices, and global market developments on Russian financial markets," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 13(2), pages 373-393, April.
    2. Spierdijk, Laura, 2004. "An empirical analysis of the role of the trading intensity in information dissemination on the NYSE," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 163-184, March.
    3. Christian Hafner, 2005. "Durations, volume and the prediction of financial returns in transaction time," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 145-152.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Kolodyazhny Georgy & Medvedev Alexey, 2001. "Financial Crisis in Russia: The Behavior of Non-Residents," EERC Working Paper Series 2k/12e, EERC Research Network, Russia and CIS.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    8. Turan G. Bali & Panayiotis Theodossiou, 2008. "Risk Measurement Performance of Alternative Distribution Functions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 411-437, June.
    9. Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
    10. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    11. Kolodyazhny Georgy & Medvedev Alexey, 2003. "Russian stock market: participants and their strategies," EERC Working Paper Series 01-060e, EERC Research Network, Russia and CIS.
    12. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    13. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    14. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    15. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    16. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    17. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    18. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    19. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    20. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Oxford University Press, vol. 1(2), pages 159-188.
    21. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    22. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    23. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    24. McCulloch Robert E. & Tsay Ruey S., 2001. "Nonlinearity in High-Frequency Financial Data and Hierarchical Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(1), pages 1-18, April.
    25. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    26. GRAMMIG , Joachim & WELLNER, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," LIDAM Reprints CORE 1534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    27. Hanousek, Jan & Podpiera, Richard, 2003. "Informed trading and the bid-ask spread: evidence from an emerging market," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 275-296, June.
    28. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    29. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
    30. Fedorov, Pavel & Sarkissian, Sergei, 2000. "Cross-sectional variations in the degree of global integration: the case of Russian equities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 131-150, June.
    31. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    32. Satheesh Aradhyula & A. Tolga Ergun, 2004. "Trading collar, intraday periodicity and stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 909-913.
    33. Stanislav Anatolyev & Sergey Korepanov, 2003. "The term structure of Russian interest rates," Applied Economics Letters, Taylor & Francis Journals, vol. 10(13), pages 867-870.
    34. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    35. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    36. Epaminondas Panas, 2005. "Generalized beta distributions for describing and analysing intraday stock market data: testing the U-shape pattern," Applied Economics, Taylor & Francis Journals, vol. 37(2), pages 191-199.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    2. Alexander Muravyev, 2009. "Dual Class Stock in Russia: Explaining a Pricing Anomaly," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 45(2), pages 21-43, March.
    3. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    4. Kovačić, Zlatko, 2007. "Forecasting volatility: Evidence from the Macedonian stock exchange," MPRA Paper 5319, University Library of Munich, Germany.
    5. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    6. Anatolyev, Stanislav, 2008. "A 10-year retrospective on the determinants of Russian stock returns," Research in International Business and Finance, Elsevier, vol. 22(1), pages 56-67, January.
    7. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    8. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    9. Stanislav Anatolyev, 2013. "Objects of nonstructural time series modeling (in Russian)," Quantile, Quantile, issue 11, pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    2. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    3. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    4. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    5. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    6. Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
    7. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    8. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    9. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    10. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
    11. Yongmiao Hong & Yoon-Jin Lee, 2007. "Detecting Misspecifications in Autoregressive Conditional Duration Models," CAEPR Working Papers 2007-019, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    12. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    13. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    14. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    15. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
    16. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    17. Rodrigues, Bruno Dore & Souza, Reinaldo Castro & Stevenson, Maxwell J., 2012. "An analysis of intraday market behaviour before takeover announcements," International Review of Financial Analysis, Elsevier, vol. 21(C), pages 23-32.
    18. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    19. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    20. Fatima Sol Murta, 2007. "The Money Market Daily Session :an UHF-GARCH Model Applied to the Portuguese Case Before and After the Introduction Of the Minimum Reserve System of the Single Monetary Policy," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 50(3), pages 285-314.
    21. Anthony Tay & Christopher Ting & Yiu Kuen Tse & Mitch Warachka, 2007. "Modeling Transaction Data of Trade Direction and Estimation of Probability of Informed Trading," Finance Working Papers 22483, East Asian Bureau of Economic Research.

    More about this item

    Keywords

    High frequency data; Trading intensity; Intertrade durations; ACD model; ARMA–GARCH model; Market microstructure.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfr:cefirw:w0070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia Babich (email available below). General contact details of provider: https://edirc.repec.org/data/cefirru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.