[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6396.html
   My bibliography  Save this paper

Long Memory and Data Frequency in Financial Markets

Author

Listed:
  • Guglielmo Maria Caporale
  • Luis A. Gil-Alana
  • Alex Plastun
Abstract
This paper investigates persistence in financial time series at three different frequencies (daily, weekly and monthly). The analysis is carried out for various financial markets (stock markets, FOREX, commodity markets) over the period from 2000 to 2016 using two different long memory approaches (R/S analysis and fractional integration) for robustness purposes. The results indicate that persistence is higher at lower frequencies, for both returns and their volatility. This is true of the stock markets (both developed and emerging) and partially of the FOREX and commodity markets examined. Such evidence against the random walk behavior implies predictability and is inconsistent with the Efficient Market Hypothesis (EMH), since abnormal profits can be made using specific option trading strategies (butterfly, straddle, strangle, iron condor, etc.).

Suggested Citation

  • Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
  • Handle: RePEc:ces:ceswps:_6396
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp6396.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    2. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    3. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    4. Sadique, Shibley & Silvapulle, Param, 2001. "Long-Term Memory in Stock Market Returns: International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 59-67, January.
    5. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2007. "The Hurst exponent in energy futures prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 325-332.
    6. Batten, Jonathan A. & Ellis, Craig & Fetherston, Thomas A., 2005. "Return anomalies on the Nikkei: Are they statistical illusions?," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1125-1136.
    7. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    8. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    9. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    10. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2009. "Mean reversion in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2007-2015.
    11. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    12. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    13. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
    14. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    15. Katsumi Shimotsu & Peter C. B. Phillips, 2002. "Pooled Log Periodogram Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(1), pages 57-93, January.
    16. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    17. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    18. Lennart Berg & Johan Lyhagen, 1998. "Short and long-run dependence in Swedish stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 8(4), pages 435-443.
    19. Richard T. Baillie & Young‐Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long memory models for daily and high frequency commodity futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(7), pages 643-668, July.
    20. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    21. Billy P. Helms & Fred R. Kaen & Robert E. Rosenman, 1984. "Memory in commodity futures contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 4(4), pages 559-567, December.
    22. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    23. repec:clg:wpaper:2007-02 is not listed on IDEAS
    24. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    25. Booth, G. Geoffrey & Kaen, Fred R. & Koveos, Peter E., 1982. "R/S analysis of foreign exchange rates under two international monetary regimes," Journal of Monetary Economics, Elsevier, vol. 10(3), pages 407-415.
    26. Ignacio N Lobato & Carlos Velasco, 2007. "Efficient Wald Tests for Fractional Unit Roots," Econometrica, Econometric Society, vol. 75(2), pages 575-589, March.
    27. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    28. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(1), pages 44-79, February.
    29. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    30. John Barkoulas & Walter C. Labys & Joseph Onochie, 1997. "Fractional dynamics in international commodity prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(2), pages 161-189, April.
    31. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    32. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    33. Benoit B. Mandelbrot, 1972. "Statistical Methodology for Nonperiodic Cycles: From the Covariance To R/S Analysis," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 1, number 3, pages 259-290, National Bureau of Economic Research, Inc.
    34. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    35. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    36. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    37. Couillard, Michel & Davison, Matt, 2005. "A comment on measuring the Hurst exponent of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 404-418.
    38. Maria Caporale, Guglielmo & Gil-Alana, Luis & Plastun, Alex & Makarenko, Inna, 2013. "Long memory in the ukrainian stock market and financial crises," MPRA Paper 59061, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis P. Antoniades & Giuseppe Brandi & L. G. Magafas & T. Di Matteo, 2020. "The use of scaling properties to detect relevant changes in financial time series: a new visual warning tool," Papers 2010.08890, arXiv.org, revised Dec 2020.
    2. Long Hai Vo & Duc Hong Vo, 2020. "Modelling Australian Dollar Volatility at Multiple Horizons with High-Frequency Data," Risks, MDPI, vol. 8(3), pages 1-16, August.
    3. Naveen Musunuru, 2019. "Modeling Long Range Dependence in Wheat Food Price Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(9), pages 1-46, September.
    4. Antoniades, I.P. & Brandi, Giuseppe & Magafas, L. & Di Matteo, T., 2021. "The use of scaling properties to detect relevant changes in financial time series: A new visual warning tool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Omane-Adjepong, Maurice & Boako, Gidoen & Alagidede, Paul, 2018. "Modelling heterogeneous speculation in Ghana’s foreign exchange market: Evidence from ARFIMA-FIGARCH and Semi-Parametric methods," MPRA Paper 86617, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    2. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
    3. Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016. "Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
    4. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    5. Guglielmo Caporale & Luis Gil-Alana, 2013. "Long memory in US real output per capita," Empirical Economics, Springer, vol. 44(2), pages 591-611, April.
    6. Maria Caporale, Guglielmo & Gil-Alana, Luis & Plastun, Alex & Makarenko, Inna, 2013. "Long memory in the ukrainian stock market and financial crises," MPRA Paper 59061, University Library of Munich, Germany.
    7. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    8. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    9. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    10. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    11. John Elder & Sriram Villupuram, 2012. "Persistence in the return and volatility of home price indices," Applied Financial Economics, Taylor & Francis Journals, vol. 22(22), pages 1855-1868, November.
    12. Luis A. Gil-Alana & Trilochan Tripathy, 2016. "Long Range Dependence in the Indian Stock Market: Evidence of Fractional Integration, Non-Linearities and Breaks," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 199-215, December.
    13. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    14. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    16. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
    17. Barros, Carlos Pestana & Gil-Alana, Luis A. & Payne, James E., 2012. "Comovements among U.S. state housing prices: Evidence from fractional cointegration," Economic Modelling, Elsevier, vol. 29(3), pages 936-942.
    18. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    19. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.
    20. Guglielmo Maria Caporale & Juncal Cuñado & Luis A. Gil-Alana, 2013. "Modelling long-run trends and cycles in financial time series data," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 405-421, May.

    More about this item

    Keywords

    persistence; long memory; R; S analysis; fractional integration;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.