[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bss/wpaper/44.html
   My bibliography  Save this paper

Estimation of marginal odds ratios

Author

Listed:
  • Ben Jann
  • Karlson, Kristian Bernt
Abstract
Coefficients from logistic regression are affected by noncollapsibility, which means that the comparison of coefficients across models may be misleading. Several strategies have been proposed in the literature to respond to these difficulties, the most popular of which is to report average marginal effects (on the probability scale) rather than odds ratios. Average marginal effects (AMEs) have many desirable properties but at least in part they throw the baby out with the bathwater. The size of an AME strongly depends on the marginal distribution of the dependent variable; for events that are very likely or very unlikely the AME necessarily has to be small because the probability space is bounded. Logistic regression, in contrast, estimates odds ratios which are free from such flooring and ceiling effects. Hence, odds ratios may be more appropriate than AMEs for comparison of effect sizes in many applications. Yet, logistic regression estimates conditional odds ratios, which are not comparable across different specifications. In this paper, we aim to remedy the declining popularity of the odds ratio by introducing an estimand that we term the "marginal odds ratio"; that is, logit coefficients that have properties similar to AMEs, but which retain the odds ratio interpretation. We define the marginal odds ratio theoretically in terms of potential outcomes, both for binary and continuous treatments, we develop estimation methods using three different approaches (G-computation, inverse probability weighting, RIF regression), and we present an example that illustrates the usefulness and interpretation of the marginal odds ratio.

Suggested Citation

  • Ben Jann & Karlson, Kristian Bernt, 2023. "Estimation of marginal odds ratios," University of Bern Social Sciences Working Papers 44, University of Bern, Department of Social Sciences, revised 17 Jan 2023.
  • Handle: RePEc:bss:wpaper:44
    as

    Download full text from publisher

    File URL: https://boris.unibe.ch/176998/8/jann-karlson-2023-mor.pdf
    File Function: Revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    2. Richard Williams, 2006. "Generalized ordered logit/partial proportional odds models for ordinal dependent variables," Stata Journal, StataCorp LP, vol. 6(1), pages 58-82, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karlson, Kristian Bernt & Ben Jann, 2023. "Marginal Odds Ratios: What They Are, How to Compute Them, and Why Sociologists Might Want to Use Them," University of Bern Social Sciences Working Papers 45, University of Bern, Department of Social Sciences.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyuan Zhou, 2022. "Does the Source of Inheritance Matter in Bequest Attitudes? Evidence from Japan," Journal of Family and Economic Issues, Springer, vol. 43(4), pages 867-887, December.
    2. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    3. D'Alberto, R. & Targetti, S. & Schaller, L. & Bartolini, F. & Eichhorn, T. & Haltia, E. & Harmanny, K. & Le Gloux, F. & Nikolov, D. & Runge, T. & Vergamini, D. & Viaggi, D., 2024. "A European perspective on acceptability of innovative agri-environment-climate contract solutions," Land Use Policy, Elsevier, vol. 141(C).
    4. Joanna Tyrowicz & Lucas van der Velde, 2017. "When the opportunity knocks: large structural shocks and gender wage gaps," GRAPE Working Papers 2, GRAPE Group for Research in Applied Economics.
    5. Michele Raitano & Francesco Vona & Claudia Vittori, 2015. "The effect of parental background along the son's earnings distribution : does one model fit for all?," Working Papers hal-03459749, HAL.
    6. Wang, Zheng-Xin & Jv, Yue-Qi, 2023. "Revisiting income inequality among households: New evidence from the Chinese Household Income Project," China Economic Review, Elsevier, vol. 81(C).
    7. Valentine Fays & Benoît Mahy & François Rycx, 2023. "Wage differences according to workers' origin: The role of working more upstream in GVCs," LABOUR, CEIS, vol. 37(2), pages 319-342, June.
    8. Yuri Reina-Aranza, 2015. "Violencia de pareja y estado de salud de la mujer en Colombia," Documentos de Trabajo Sobre Economía Regional y Urbana 13964, Banco de la República, Economía Regional.
    9. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.
    10. Holmes, Craig & Mayhew, Ken, 2015. "Have UK Earnings Distributions Polarised?," INET Oxford Working Papers 2015-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    11. Sieds, 2017. "Complete Volume LXXI n. 3 2017," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 71(3), pages 1-150, July-Sept.
    12. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    13. Mengyuan Zhou, 2019. "The Effect of the Source of Inheritance on Bequest Attitudes: Evidence from Japan," Keio-IES Discussion Paper Series 2019-018, Institute for Economics Studies, Keio University.
    14. Xiaoying Liu & Jere R. Behrman & Emily Hannum & Fan Wang & Qingguo Zhao, 2022. "Same environment, stratified impacts? Air pollution, extreme temperatures, and birth weight in south China," Papers 2204.00219, arXiv.org.
    15. William Magee, 2023. "Earnings, Intersectional Earnings Inequality, Disappointment in One’s Life Achievements and Life (Dis)satisfaction," Journal of Happiness Studies, Springer, vol. 24(1), pages 373-396, January.
    16. Cristina Chaminade & Monica Plechero, 2015. "Do Regions Make a Difference? Regional Innovation Systems and Global Innovation Networks in the ICT Industry," European Planning Studies, Taylor & Francis Journals, vol. 23(2), pages 215-237, February.
    17. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.
    18. Dirk Crass & Franz Schwiebacher, 2017. "The importance of trademark protection for product differentiation and innovation," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 44(2), pages 199-220, June.
    19. Sergio Longobardi & Margherita Maria Pagliuca & Andrea Regoli, 2018. "Can problem-solving attitudes explain the gender gap in financial literacy? Evidence from Italian students’ data," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1677-1705, July.
    20. Bruno Amable, 2009. "The Differentiation of Social Demands in Europe. The Social Basis of the European Models of Capitalism," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 91(3), pages 391-426, May.

    More about this item

    Keywords

    marginal odds ratio; noncollapsibility; logistic regression; G-computation; inverse probability weighting; recentered influence functions;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bss:wpaper:44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ben Jann (email available below). General contact details of provider: https://www.sowi.unibe.ch/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.