[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/287.html
   My bibliography  Save this paper

Assessing central counterparty margin coverage on futures contracts using GARCH models

Author

Listed:
  • Raymond Knott
  • Marco Polenghi
Abstract
This study considers how the probability of exceeding central counterparty (CCP) initial margin levels can be estimated, in order to provide a timely and informative measure of risk coverage. Previous studies of CCP margining have largely focused on the unconditional distribution of returns, estimating margin coverage on a long-term average basis. The present study extends previous work by estimating conditional margin coverage using a GARCH (1,1) model, so that variations in coverage can be tracked over a much shorter time frame. The model is applied to estimating non-coverage probabilities for two heavily traded derivatives contracts, the Brent and FTSE 100 futures. To account for the well-documented fat-tailed characteristics of distributions of futures returns, several variants of the GARCH model are estimated. These assume that innovations are distributed according to either normal, Student t, extreme value or historical distributions. Backtesting is used to select the best performing distribution. During the sample period, margins are found to provide a coverage level generally in excess of 99%, over a one-day time horizon. It is noted, however, that the coverage probability implied by the model is likely to fall under more volatile market conditions; under these circumstances central counterparties will reset initial margin more frequently and call for margin intraday.

Suggested Citation

  • Raymond Knott & Marco Polenghi, 2006. "Assessing central counterparty margin coverage on futures contracts using GARCH models," Bank of England working papers 287, Bank of England.
  • Handle: RePEc:boe:boeewp:287
    as

    Download full text from publisher

    File URL: http://www.bankofengland.co.uk/research/Documents/workingpapers/2006/WP287.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Meenakshi Venkateswaran & B. Wade Brorsen & Joyce A. Hall, 1993. "The distribution of standardized futures price changes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(3), pages 279-298, May.
    3. G. Geoffrey Booth & John Paul Broussard & Teppo Martikainen & Vesa Puttonen, 1997. "Prudent Margin Levels in the Finnish Stock Index Futures Market," Management Science, INFORMS, vol. 43(8), pages 1177-1188, August.
    4. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    5. George W. Fenn & Paul Kupiec, 1993. "Prudential margin policy in a futures‐style settlement system," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(4), pages 389-408, June.
    6. Paul Kupiec, 1998. "Margin Requirements, Volatility, and Market Integrity: What Have We Learned Since the Crash?," Journal of Financial Services Research, Springer;Western Finance Association, vol. 13(3), pages 231-255, June.
    7. Danielsson, Jon & Morimoto, Yuji, 2000. "Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 25-48, December.
    8. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    9. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    10. Olivier V. Pictet & Michel M. Dacorogna & Ulrich A. Muller, 1996. "Hill, Bootstrap and Jackknife Estimators for Heavy Tails," Working Papers 1996-12-10, Olsen and Associates.
    11. Broussard, John Paul, 2001. "Extreme-value and margin setting with and without price limits," The Quarterly Review of Economics and Finance, Elsevier, vol. 41(3), pages 365-385.
    12. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    13. Hans Dewachter & Geert Gielens, 1999. "Setting futures margins: the extremes approach," Applied Financial Economics, Taylor & Francis Journals, vol. 9(2), pages 173-181.
    14. Giovanni Barone‐Adesi & Kostas Giannopoulos & Les Vosper, 2002. "Backtesting Derivative Portfolios with Filtered Historical Simulation (FHS)," European Financial Management, European Financial Management Association, vol. 8(1), pages 31-58, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.
    2. Elena Goldman & Xiangjin Shen, 2018. "Analysis of Asymmetric GARCH Volatility Models with Applications to Margin Measurement," Staff Working Papers 18-21, Bank of Canada.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Shi, Wei & Irwin, Scott H., 2006. "What Happens when Peter can't Pay Paul: Risk Management at Futures Exchange Clearinghouses," 2006 Annual meeting, July 23-26, Long Beach, CA 21087, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Chen-Yu Chen & Jian-Hsin Chou & Hung-Gay Fung & Yiuman Tse, 2017. "Setting the futures margin with price limits: the case for single-stock futures," Review of Quantitative Finance and Accounting, Springer, vol. 48(1), pages 219-237, January.
    4. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    5. Robert A. Jones & Christophe Pérignon, 2013. "Derivatives Clearing, Default Risk, and Insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 373-400, June.
    6. Shanker, Latha & Balakrishnan, Narayanaswamy, 2005. "Optimal clearing margin, capital and price limits for futures clearinghouses," Journal of Banking & Finance, Elsevier, vol. 29(7), pages 1611-1630, July.
    7. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    8. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    9. Alexander, Carol & Kaeck, Andreas & Sumawong, Anannit, 2019. "A parsimonious parametric model for generating margin requirements for futures," European Journal of Operational Research, Elsevier, vol. 273(1), pages 31-43.
    10. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    11. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
    12. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    13. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    14. Chen, Yan & Yu, Wenqiang, 2020. "Setting the margins of Hang Seng Index Futures on different positions using an APARCH-GPD Model based on extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    15. Cotter, John & Longin, Francois, 2004. "Margin setting with high-frequency data," MPRA Paper 3528, University Library of Munich, Germany, revised 2006.
    16. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    17. Lam, Kin & Yu, P.L.H. & Lee, P.H., 2010. "A margin scheme that advises on when to change required margin," European Journal of Operational Research, Elsevier, vol. 207(1), pages 524-530, November.
    18. Niklas Wagner & Terry Marsh, 2004. "Tail index estimation in small smaples Simulation results for independent and ARCH-type financial return models," Statistical Papers, Springer, vol. 45(4), pages 545-561, October.
    19. Chiu, Chien-Liang & Chiang, Shu-Mei & Hung, Jui-Cheng & Chen, Yu-Lung, 2006. "Clearing margin system in the futures markets—Applying the value-at-risk model to Taiwanese data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 353-374.
    20. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.