[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bbh/wpaper/20-07.html
   My bibliography  Save this paper

A Large Canadian Database for Macroeconomic Analysis

Author

Listed:
  • Olivier Fortin-Gagnon

    (Groupe Desjardins)

  • Maxime Leroux

    (University of Quebec in Montreal)

  • Dalibor Stevanovic

    (University of Quebec in Montreal)

  • Stephane Surprenant

    (University of Quebec in Montreal)

Abstract
This paper provides a large-scale Canadian macroeconomic database and shows its usefulness for empirical macroeconomic analysis. The dataset contains hundreds of Canadian and provincial economic indicators. It is designed to be updated regularly and real-time vintages are publicly available. It relieves users to deal with data changes and methodological revisions. We show four useful features of this dataset for macroeconomic research. First, the factor structure explains a sizeable part of the variation of the dataset and appears as an appropriate means of dimension reduction. Second, the dataset is useful to capture turning points of the Canadian business cycle. Third, it has substantial predictive power when forecasting key macroeconomic indicators. Fourth, the richness of the panel is used to study the effectiveness of monetary policy across regions and sectors.

Suggested Citation

  • Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "A Large Canadian Database for Macroeconomic Analysis," Working Papers 20-07, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
  • Handle: RePEc:bbh:wpaper:20-07
    as

    Download full text from publisher

    File URL: https://chairemacro.esg.uqam.ca/wp-content/uploads/sites/146/LSS_CAN_MC_Draft_March2021.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    2. Champagne, Julien & Sekkel, Rodrigo, 2018. "Changes in monetary regimes and the identification of monetary policy shocks: Narrative evidence from Canada," Journal of Monetary Economics, Elsevier, vol. 99(C), pages 72-87.
    3. Cantelmo, Alessandro & Melina, Giovanni, 2018. "Monetary policy and the relative price of durable goods," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 1-48.
    4. Kevin Moran & Dalibor Stevanovic & Adam Kader Touré, 2022. "Macroeconomic uncertainty and the COVID‐19 pandemic: Measure and impacts on the Canadian economy," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 379-405, February.
    5. Dedola, Luca & Lippi, Francesco, 2005. "The monetary transmission mechanism: Evidence from the industries of five OECD countries," European Economic Review, Elsevier, vol. 49(6), pages 1543-1569, August.
    6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    7. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    8. Edward E. Leamer, 2015. "Housing Really Is the Business Cycle: What Survives the Lessons of 2008–09?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(S1), pages 43-50, March.
    9. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    10. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    11. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    12. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    13. Dalibor Stevanovic, 2015. "Factor augmented autoregressive distributed lag models with macroeconomic applications," CIRANO Working Papers 2015s-33, CIRANO.
    14. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    15. Stefano Micossi, 2015. "The Monetary Policy of the European Central Bank (2002-2015)," Bruges European Economic Policy Briefings 35, European Economic Studies Department, College of Europe.
    16. Leandro Prados de la Escosura, 2016. "Mismeasuring long-run growth: the bias from splicing national accounts—the case of Spain," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 10(3), pages 251-275, September.
    17. Nathan Bedock & Dalibor Stevanovic, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics, Canadian Economics Association, vol. 50(2), pages 541-570, May.
    18. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    19. Gert Peersman & Frank Smets, 2005. "The Industry Effects of Monetary Policy in the Euro Area," Economic Journal, Royal Economic Society, vol. 115(503), pages 319-342, April.
    20. John W. Galbraith & Greg Tkacz, 2007. "Forecast content and content horizons for some important macroeconomic time series," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(3), pages 935-953, August.
    21. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    22. Ilian Mihov, 2001. "Monetary policy implementation and transmission in the European Monetary Union," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 16(33), pages 370-406.
    23. Jean Boivin & Marc P. Giannoni, 2006. "Has Monetary Policy Become More Effective?," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 445-462, August.
    24. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
    25. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    26. Dennis W. Jansen & Ruby P. Kishan & Diego E. Vacaflores, 2013. "Sectoral Effects of Monetary Policy: The Evidence from Publicly Traded Firms," Southern Economic Journal, John Wiley & Sons, vol. 79(4), pages 946-970, April.
    27. Dennis W. Jansen & Ruby P. Kishan & Diego E. Vacaflores, 2013. "Sectoral Effects of Monetary Policy: The Evidence from Publicly Traded Firms," Southern Economic Journal, John Wiley & Sons, vol. 79(4), pages 946-970, April.
    28. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    29. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    30. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    31. Helena Dominguez‐Torres & Luis A. Hierro, 2019. "The Regional Effects Of Monetary Policy: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 33(2), pages 604-638, April.
    32. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    33. Erceg, Christopher & Levin, Andrew, 2006. "Optimal monetary policy with durable consumption goods," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1341-1359, October.
    34. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    35. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    36. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    37. Jeremy Kronick & Steve Ambler, 2019. "Do demographics affect monetary policy transmission in Canada?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 787-811, April.
    38. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    39. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    40. Robert B. Barsky & Christopher L. House & Miles S. Kimball, 2007. "Sticky-Price Models and Durable Goods," American Economic Review, American Economic Association, vol. 97(3), pages 984-998, June.
    41. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    42. John Galbraith & Greg Tkacz, 2007. "How Far Can Forecasting Models Forecast? Forecast Content Horizons for Some Important Macroeconomic Variables," Staff Working Papers 07-1, Bank of Canada.
    43. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    44. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    45. Marc-André Gosselin & Greg Tkacz, 2001. "Evaluating Factor Models: An Application to Forecasting Inflation in Canada," Staff Working Papers 01-18, Bank of Canada.
    46. Micossi, Stefano, 2015. "The Monetary Policy of the European Central Bank (2002-2015)," CEPS Papers 10610, Centre for European Policy Studies.
    47. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    48. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    49. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    50. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    4. Ardia, David & Bluteau, Keven & Kassem, Alaa, 2021. "A century of Economic Policy Uncertainty through the French–Canadian lens," Economics Letters, Elsevier, vol. 205(C).
    5. Matteo Barigozzi & Claudio Lissona & Lorenzo Tonni, 2024. "Large datasets for the Euro Area and its member countries and the dynamic effects of the common monetary policy," Papers 2410.05082, arXiv.org.
    6. Julien Champagne & Guillaume Poulin-Bellisle & Rodrigo Sekkel, 2018. "Evaluating the Bank of Canada Staff Economic Projections Using a New Database of Real-Time Data and Forecasts," Staff Working Papers 18-52, Bank of Canada.
    7. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    8. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    9. Kevin Moran & Dalibor Stevanovic & Stéphane Surprenant, 2024. "Risk Scenarios and Macroeconomic Forecasts," CIRANO Working Papers 2024s-03, CIRANO.
    10. Kevin Moran & Adam Abdel Kader Touré & Dalibor Stevanovic, 2020. "Incertitude et effets macroéconomiques : mise à jour dans le contexte de la pandémie COVID-19," CIRANO Papers 2020pe-33, CIRANO.
    11. Manuel Paquette-Dupuis & Dalibor Stevanovic & Rachidi Kotchoni, 2019. "Prévisions de l’activité économique en temps de crise," CIRANO Project Reports 2019rp-04, CIRANO.
    12. Kevin Moran & Simplice Aimé Nono & Imad Rherrad, 2018. "Forecasting with Many Predictors: How Useful are National and International Confidence Data?," Cahiers de recherche 1814, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Nathan Bedock & Dalibor Stevanović, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(2), pages 541-570, May.
    3. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    4. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. Barigozzi, Matteo & Lippi, Marco & Luciani, Matteo, 2021. "Large-dimensional Dynamic Factor Models: Estimation of Impulse–Response Functions with I(1) cointegrated factors," Journal of Econometrics, Elsevier, vol. 221(2), pages 455-482.
    7. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    8. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    9. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    10. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    11. Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
    12. Jean Boivin & Marc P. Giannoni & Dalibor Stevanović, 2020. "Dynamic Effects of Credit Shocks in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 272-284, April.
    13. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    14. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    15. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    16. Steffen R. Henzel & Malte Rengel, 2017. "Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
    17. Xia, Qiang & Liang, Rubing & Wu, Jianhong, 2017. "Transformed contribution ratio test for the number of factors in static approximate factor models," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 235-241.
    18. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    19. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    20. Matteo Luciani, 2015. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbh:wpaper:20-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dalibor Stevanovic and Alain Guay (email available below). General contact details of provider: https://edirc.repec.org/data/cmuqmca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.