[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bcb/wpaper/466.html
   My bibliography  Save this paper

Predicting Exchange Rate Volatility in Brazil: an approach using quantile autoregression

Author

Listed:
  • Alessandra Pasqualina Viola
  • Marcelo Cabus Klotzle
  • Antonio Carlos Figueiredo Pinto
  • Wagner Piazza Gaglianone
Abstract
We apply quantile regression in some of its new formulations to analyze exchange rate volatility. We use the conditional autoregressive value at risk (CAViaR) model of Engle and Manganelli (2004), which applies autoregressive functions to quantile regression to estimate volatility. That model has proved effective when compared to others for various purposes. We not only compare the forecasting power of models based on quantile regression with some models of the GARCH family, but also examine the behavior of the exchange rate along its conditional distribution and its consequent volatility. When applying CAViaR in the whole distribution, our results show differentiation of the angular coefficients for each quantile interval of the distribution for the asymmetric CAViaR model. With respect to the exchange rate volatility, we build forecasts from 60 models and use two models as reference to apply the predictive ability test of Giacomini and White (2006). The results indicate that the prediction of the asymmetric CAViaR model with quantile interval of (1, 99) is better than (or equal to) 66% of the models and worse than 34%. In turn, the other benchmark model, the GARCH (1,1), is worse than 71% of the models, better than 13%, and equal in forecasting precision to 16% of the models.

Suggested Citation

  • Alessandra Pasqualina Viola & Marcelo Cabus Klotzle & Antonio Carlos Figueiredo Pinto & Wagner Piazza Gaglianone, 2017. "Predicting Exchange Rate Volatility in Brazil: an approach using quantile autoregression," Working Papers Series 466, Central Bank of Brazil, Research Department.
  • Handle: RePEc:bcb:wpaper:466
    as

    Download full text from publisher

    File URL: https://www.bcb.gov.br/content/publicacoes/WorkingPaperSeries/wps466.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    2. Nikolaou, Kleopatra, 2008. "The behaviour of the real exchange rate: Evidence from regression quantiles," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 664-679, May.
    3. Charles Engel & Kenneth D. West, 2005. "Exchange Rates and Fundamentals," Journal of Political Economy, University of Chicago Press, vol. 113(3), pages 485-517, June.
    4. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521896955.
    5. Jongmoo Jay Choi & Anita Mehra Prasad, 1995. "Exchange Risk Sensitivity and Its Determinants: A Firm and Industry Analysis of U.S. Multinationals," Financial Management, Financial Management Association, vol. 24(3), Fall.
    6. Jorion, Philippe, 1995. "Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
    7. Michel Beine & Jérôme Lahaye & Sébastien Laurent & Christopher J. Neely & Franz C. Palm, 2007. "Central bank intervention and exchange rate volatility, its continuous and jump components," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(2), pages 201-223.
    8. Hau, Harald, 2002. "Real Exchange Rate Volatility and Economic Openness: Theory and Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(3), pages 611-630, August.
    9. Scott, Elton & Tucker, Alan L., 1989. "Predicting currency return volatility," Journal of Banking & Finance, Elsevier, vol. 13(6), pages 839-851, December.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    12. Mark Holmes, 2008. "Real Exchange Rate Stationarity in Latin America and Relative Purchasing Power Parity: A Regime Switching Approach," Open Economies Review, Springer, vol. 19(2), pages 261-275, April.
    13. Baum, Christopher F. & Caglayan, Mustafa & Barkoulas, John T., 2001. "Exchange Rate Uncertainty and Firm Profitability," Journal of Macroeconomics, Elsevier, vol. 23(4), pages 565-576, October.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Paul Krugman, 1986. "Pricing to Market when the Exchange Rate Changes," NBER Working Papers 1926, National Bureau of Economic Research, Inc.
    16. James W. Taylor, 2005. "Generating Volatility Forecasts from Value at Risk Estimates," Management Science, INFORMS, vol. 51(5), pages 712-725, May.
    17. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    18. Gonzaga, Gustavo M. & Terra, Maria Cristina T., 1997. "Equilibrium real exchange rate, volatility, and stabilization," Journal of Development Economics, Elsevier, vol. 54(1), pages 77-100, October.
    19. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    20. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    21. Lukas Menkhoff & Lucio Sarno & Maik Schmeling & Andreas Schrimpf, 2012. "Carry Trades and Global Foreign Exchange Volatility," Journal of Finance, American Finance Association, vol. 67(2), pages 681-718, April.
    22. Hausmann, Ricardo & Panizza, Ugo & Rigobon, Roberto, 2006. "The long-run volatility puzzle of the real exchange rate," Journal of International Money and Finance, Elsevier, vol. 25(1), pages 93-124, February.
    23. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    24. Zhijie Xiao & Roger Koenker, 2009. "Conditional Quantile Estimation for GARCH Models," Boston College Working Papers in Economics 725, Boston College Department of Economics.
    25. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    26. Bekiros, Stelios D., 2014. "Exchange rates and fundamentals: Co-movement, long-run relationships and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 117-134.
    27. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    28. Flood, Robert P & Rose, Andrew K, 1999. "Understanding Exchange Rate Volatility without the Contrivance of Macroeconomics," Economic Journal, Royal Economic Society, vol. 109(459), pages 660-672, November.
    29. Hooper, Peter & Kohlhagen, Steven W., 1978. "The effect of exchange rate uncertainty on the prices and volume of international trade," Journal of International Economics, Elsevier, vol. 8(4), pages 483-511, November.
    30. Lai, Ching-chong & Fang, Chung-rou & Chang, Juin-jen, 2008. "Volatility trade-offs in exchange rate target zones," International Review of Economics & Finance, Elsevier, vol. 17(3), pages 366-379.
    31. Roland Füss & Zeno Adams & Dieter G Kaiser, 2010. "The predictive power of value-at-risk models in commodity futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 11(4), pages 261-285, October.
    32. Brooks, Chris & Burke, Simon P., 1998. "Forecasting exchange rate volatility using conditional variance models selected by information criteria," Economics Letters, Elsevier, vol. 61(3), pages 273-278, December.
    33. Pavasuthipaisit, Robert, 2010. "Should inflation-targeting central banks respond to exchange rate movements?," Journal of International Money and Finance, Elsevier, vol. 29(3), pages 460-485, April.
    34. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    35. Choudhry, Taufiq, 2005. "Exchange rate volatility and the United States exports: evidence from Canada and Japan," Journal of the Japanese and International Economies, Elsevier, vol. 19(1), pages 51-71, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Musa, Nuhu, 2020. "Impact of Exchange Rate Volatility on Inflation in Nigeria," Journal of Contemporary Research in Business, Economics and Finance, Michael Laurence, vol. 3(1), pages 26-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    5. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    6. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    7. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    8. N. Antonakakis & J. Darby, 2013. "Forecasting volatility in developing countries' nominal exchange returns," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1675-1691, November.
    9. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    10. S. M. Abdullah & Salina Siddiqua & Muhammad Shahadat Hossain Siddiquee & Nazmul Hossain, 2017. "Modeling and forecasting exchange rate volatility in Bangladesh using GARCH models: a comparison based on normal and Student’s t-error distribution," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-19, December.
    11. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    12. Erragragui, Elias & Hassan, M. Kabir & Peillex, Jonathan & Khan, Abu Nahian Faisal, 2018. "Does ethics improve stock market resilience in times of instability?," Economic Systems, Elsevier, vol. 42(3), pages 450-469.
    13. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    14. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    15. Benavides, Guillermo & Capistrán, Carlos, 2012. "Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts," Journal of Empirical Finance, Elsevier, vol. 19(5), pages 627-639.
    16. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    17. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    18. Narayan Tondapu, 2024. "Analyzing Currency Fluctuations: A Comparative Study of GARCH, EWMA, and IV Models for GBP/USD and EUR/GBP Pairs," Papers 2402.07435, arXiv.org.
    19. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
    20. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcb:wpaper:466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Barbone Gonzalez (email available below). General contact details of provider: https://www.bcb.gov.br/en .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.