[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2207.10476.html
   My bibliography  Save this paper

Efficiency of the Moscow Stock Exchange before 2022

Author

Listed:
  • Andrey Shternshis
  • Piero Mazzarisi
  • Stefano Marmi
Abstract
This paper investigates the degree of efficiency for the Moscow Stock Exchange. A market is called efficient if prices of its assets fully reflect all available information. We show that the degree of market efficiency is significantly low for most of the months from 2012 to 2021. We calculate the degree of market efficiency by (i) filtering out regularities in financial data and (ii) computing the Shannon entropy of the filtered return time series. We have developed a simple method for estimating volatility and price staleness in empirical data, in order to filter out such regularity patterns from return time series. The resulting financial time series of stocks' returns are then clustered into different groups according to some entropy measures. In particular, we use the Kullback-Leibler distance and a novel entropy metric capturing the co-movements between pairs of stocks. By using Monte Carlo simulations, we are then able to identify the time periods of market inefficiency for a group of 18 stocks. The inefficiency of the Moscow Stock Exchange that we have detected is a signal of the possibility of devising profitable strategies, net of transaction costs. The deviation from the efficient behavior for a stock strongly depends on the industrial sector it belongs.

Suggested Citation

  • Andrey Shternshis & Piero Mazzarisi & Stefano Marmi, 2022. "Efficiency of the Moscow Stock Exchange before 2022," Papers 2207.10476, arXiv.org, revised Jul 2022.
  • Handle: RePEc:arx:papers:2207.10476
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2207.10476
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jae H. & Shamsuddin, Abul, 2008. "Are Asian stock markets efficient? Evidence from new multiple variance ratio tests," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 518-532, June.
    2. Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
    3. Alexandru Mandes, 2016. "Algorithmic and High-Frequency Trading Strategies: A Literature Review," MAGKS Papers on Economics 201625, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    4. Lucio Maria Calcagnile & Fulvio Corsi & Stefano Marmi, 2020. "Entropy and Efficiency of the ETF Market," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 143-184, January.
    5. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Bernard Bollen, 2015. "What should the value of lambda be in the exponentially weighted moving average volatility model?," Applied Economics, Taylor & Francis Journals, vol. 47(8), pages 853-860, February.
    8. A. Dionisio & R. Menezes & D. A. Mendes, 2006. "An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 161-164, March.
    9. Linton, Oliver & Smetanina, Ekaterina, 2016. "Testing the martingale hypothesis for gross returns," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 664-689.
    10. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    11. Genaro Sucarrat & Alvaro Escribano, 2018. "Estimation of log-GARCH models in the presence of zero returns," The European Journal of Finance, Taylor & Francis Journals, vol. 24(10), pages 809-827, July.
    12. Wiston Adrian Risso, 2009. "The informational efficiency: the emerging markets versus the developed markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(5), pages 485-487.
    13. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2020. "Statistical inferences for price staleness," Journal of Econometrics, Elsevier, vol. 218(1), pages 32-81.
    14. K. Ahn & D. Lee & S. Sohn & B. Yang, 2019. "Stock market uncertainty and economic fundamentals: an entropy-based approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(7), pages 1151-1163, July.
    15. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey Shternshis & Piero Mazzarisi, 2022. "Variance of entropy for testing time-varying regimes with an application to meme stocks," Papers 2211.05415, arXiv.org, revised Jun 2023.
    2. Andrey Shternshis & Piero Mazzarisi, 2024. "Variance of entropy for testing time-varying regimes with an application to meme stocks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 215-258, June.
    3. Andrey Shternshis & Stefano Marmi, 2023. "Price predictability at ultra-high frequency: Entropy-based randomness test," Papers 2312.16637, arXiv.org, revised May 2024.
    4. Lavín, Jaime F. & Valle, Mauricio A. & Magner, Nicolás S., 2024. "Stock market pattern recognition using symbol entropy analysis," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shternshis, Andrey & Mazzarisi, Piero & Marmi, Stefano, 2022. "Measuring market efficiency: The Shannon entropy of high-frequency financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    3. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    4. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    5. Ben Rejeb, Aymen & Boughrara, Adel, 2013. "Financial liberalization and stock markets efficiency: New evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 17(C), pages 186-208.
    6. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    7. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    8. Andrey Shternshis & Stefano Marmi, 2023. "Price predictability at ultra-high frequency: Entropy-based randomness test," Papers 2312.16637, arXiv.org, revised May 2024.
    9. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    10. Milionis, Alexandros E., 2007. "Efficient capital markets: A statistical definition and comments," Statistics & Probability Letters, Elsevier, vol. 77(6), pages 607-613, March.
    11. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    12. Nasha Maveé & Mr. Roberto Perrelli & Mr. Axel Schimmelpfennig, 2016. "Surprise, Surprise: What Drives the Rand / U.S. Dollar Exchange Rate Volatility?," IMF Working Papers 2016/205, International Monetary Fund.
    13. Aurelio F. Bariviera & Luciano Zunino & Osvaldo A. Rosso, 2016. "Crude Oil Market And Geopolitical Events: An Analysis Based On Information-Theory-Based Quantifiers," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 21(1), pages 41-51, May.
    14. Krishnamurti, Chandrasekhar & Hoque, Ariful, 2011. "Efficiency of European emissions markets: Lessons and implications," Energy Policy, Elsevier, vol. 39(10), pages 6575-6582, October.
    15. Yudong Wang & Chongfeng Wu, 2013. "Efficiency of Crude Oil Futures Markets: New Evidence from Multifractal Detrending Moving Average Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 393-414, December.
    16. Charles, Amélie & Darné, Olivier, 2009. "The efficiency of the crude oil markets: Evidence from variance ratio tests," Energy Policy, Elsevier, vol. 37(11), pages 4267-4272, November.
    17. Bekiros, Stelios D., 2010. "Heterogeneous trading strategies with adaptive fuzzy Actor-Critic reinforcement learning: A behavioral approach," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1153-1170, June.
    18. Lucena, Pierre & Figueiredo, Antonio Carlos & Lachtermacher, Gerson, 2008. "Critérios de formação de carteiras de ativos através de hierarchical clusters [Criteria of portfolio formation of stocks through hierarchical clusters]," MPRA Paper 38105, University Library of Munich, Germany.
    19. Samih Antoine Azar, 2013. "The Spurious Relation between Inflation Uncertainty and Stock Returns: Evidence from the U.S," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 99-109, November.
    20. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2207.10476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.