[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.05235.html
   My bibliography  Save this paper

Machine Learning Inference on Inequality of Opportunity

Author

Listed:
  • Juan Carlos Escanciano
  • Joel Robert Terschuur
Abstract
Equality of opportunity has emerged as an important ideal of distributive justice. Empirically, Inequality of Opportunity (IOp) is measured in two steps: first, an outcome (e.g., income) is predicted given individual circumstances; and second, an inequality index (e.g., Gini) of the predictions is computed. Machine Learning (ML) methods are tremendously useful in the first step. However, they can cause sizable biases in IOp since the bias-variance trade-off allows the bias to creep in the second step. We propose a simple debiased IOp estimator robust to such ML biases and provide the first valid inferential theory for IOp. We demonstrate improved performance in simulations and report the first unbiased measures of income IOp in Europe. Mother's education and father's occupation are the circumstances that explain the most. Plug-in estimators are very sensitive to the ML algorithm, while debiased IOp estimators are robust. These results are extended to a general U-statistics setting.

Suggested Citation

  • Juan Carlos Escanciano & Joel Robert Terschuur, 2022. "Machine Learning Inference on Inequality of Opportunity," Papers 2206.05235, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2206.05235
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.05235
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Escanciano, J. Carlos, 2006. "A Consistent Diagnostic Test For Regression Models Using Projections," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1030-1051, December.
    2. Bertille Antoine & Xiaolin Sun, 2022. "Partially linear models with endogeneity: a conditional moment-based approach [Efficient estimation of models with conditional moment restrictions containing unknown functions]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 256-275.
    3. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    4. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    5. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    6. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
    7. Koen Jochmans, 2013. "Pairwise‐comparison estimation with non‐parametric controls," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 340-372, October.
    8. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    9. John E. Roemer & Alain Trannoy, 2016. "Equality of Opportunity: Theory and Measurement," Journal of Economic Literature, American Economic Association, vol. 54(4), pages 1288-1332, December.
    10. Richard W. Blundell & James L. Powell, 2004. "Endogeneity in Semiparametric Binary Response Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 655-679.
    11. Rajarshi Mukherjee & Whitney K. Newey & James Robins, 2017. "Semiparametric efficient empirical higher order influence function estimators," CeMMAP working papers CWP30/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Xuexin Wang, 2018. "Consistent Estimation Of Models Defined By Conditional Moment Restrictions Under Minimal Identifying Conditions," Working Papers 2018-10-29, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    13. Xavier Ramos & Dirk gaer, 2016. "Approaches To Inequality Of Opportunity: Principles, Measures And Evidence," Journal of Economic Surveys, Wiley Blackwell, vol. 30(5), pages 855-883, December.
    14. Fafchamps, Marcel & Gubert, Flore, 2007. "The formation of risk sharing networks," Journal of Development Economics, Elsevier, vol. 83(2), pages 326-350, July.
    15. Sherman, Robert P., 1994. "U-Processes in the Analysis of a Generalized Semiparametric Regression Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 372-395, June.
    16. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    17. Brunori, Paolo & Hufe, Paul & Mahler, Daniel Gerszon, 2021. "The Roots of Inequality: Estimating Inequality of Opportunity from Regression Trees and Forests," IZA Discussion Papers 14689, Institute of Labor Economics (IZA).
    18. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    19. Lu Mao, 2018. "On causal estimation using $U$-statistics," Biometrika, Biometrika Trust, vol. 105(1), pages 215-220.
    20. repec:dau:papers:123456789/4392 is not listed on IDEAS
    21. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    22. Powell, James L., 1987. "Semiparametric Estimation Of Bivariate Latent Variable Models," SSRI Workshop Series 292689, University of Wisconsin-Madison, Social Systems Research Institute.
    23. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moramarco, Domenico & Brunori, Paolo & Salas Rojo, Pedro, 2024. "Biases in inequality of opportunity estimates: measures and solutions," LSE Research Online Documents on Economics 125442, London School of Economics and Political Science, LSE Library.
    2. Jacquemain, Alexandre & Heuchenne, Cédric & Pircalabelu, Eugen, 2024. "A penalised bootstrap estimation procedure for the explained Gini coefficient," LIDAM Discussion Papers ISBA 2024005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Domenico Moramarco & Paolo Brunori & Pedro Salas-Rojo, 2024. "Biases in inequality of opportunity estimates: measures and solutions," Working Papers 675, ECINEQ, Society for the Study of Economic Inequality.
    4. Domenico Moramarco & Paolo Brunori & Pedro Salas-Rojo, 2024. "Biases in inequality of opportunity estimates: measures and solutions," SERIES 02-2024, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koen Jochmans, 2013. "Pairwise‐comparison estimation with non‐parametric controls," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 340-372, October.
    2. Xiaolin Sun, 2022. "Estimation of Heterogeneous Treatment Effects Using a Conditional Moment Based Approach," Papers 2210.15829, arXiv.org, revised Oct 2024.
    3. repec:spo:wpecon:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    4. repec:spo:wpmain:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    5. Aradillas-Lopez, Andres, 2024. "Inference in models with partially identified control functions," Journal of Econometrics, Elsevier, vol. 238(1).
    6. repec:hal:wpspec:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    7. repec:hal:spmain:info:hdl:2441/dambferfb7dfprc9m01h6f4h2 is not listed on IDEAS
    8. Bertille Antoine & Xiaolin Sun, 2022. "Partially linear models with endogeneity: a conditional moment-based approach [Efficient estimation of models with conditional moment restrictions containing unknown functions]," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 256-275.
    9. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    10. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    11. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    12. repec:hal:wpspec:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    13. repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    14. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    15. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    16. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
    17. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    18. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    19. Song, Kyungchul, 2010. "Testing semiparametric conditional moment restrictions using conditional martingale transforms," Journal of Econometrics, Elsevier, vol. 154(1), pages 74-84, January.
    20. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    21. repec:spo:wpmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    22. repec:spo:wpecon:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
    23. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    24. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    25. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    26. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    27. Kim, Namhyun & W. Saart, Patrick, 2021. "Estimation in partially linear semiparametric models with parametric and/or nonparametric endogeneity," Cardiff Economics Working Papers E2021/9, Cardiff University, Cardiff Business School, Economics Section.
    28. Jochmans, Koen, 2015. "Multiplicative-error models with sample selection," Journal of Econometrics, Elsevier, vol. 184(2), pages 315-327.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.05235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.