[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.06818.html
   My bibliography  Save this paper

Dynamic treatment effects: high-dimensional inference under model misspecification

Author

Listed:
  • Yuqian Zhang
  • Weijie Ji
  • Jelena Bradic
Abstract
Estimating dynamic treatment effects is essential across various disciplines, offering nuanced insights into the time-dependent causal impact of interventions. However, this estimation presents challenges due to the "curse of dimensionality" and time-varying confounding, which can lead to biased estimates. Additionally, correctly specifying the growing number of treatment assignments and outcome models with multiple exposures seems overly complex. Given these challenges, the concept of double robustness, where model misspecification is permitted, is extremely valuable, yet unachieved in practical applications. This paper introduces a new approach by proposing novel, robust estimators for both treatment assignments and outcome models. We present a "sequential model double robust" solution, demonstrating that double robustness over multiple time points can be achieved when each time exposure is doubly robust. This approach improves the robustness and reliability of dynamic treatment effects estimation, addressing a significant gap in this field.

Suggested Citation

  • Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2111.06818
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.06818
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Murphy S.A. & van der Laan M.J. & Robins J.M., 2001. "Marginal Mean Models for Dynamic Regimes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1410-1423, December.
    4. Kosuke Imai & Marc Ratkovic, 2015. "Robust Estimation of Inverse Probability Weights for Marginal Structural Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1013-1023, September.
    5. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    6. Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
    7. Daniel J. Luckett & Eric B. Laber & Anna R. Kahkoska & David M. Maahs & Elizabeth Mayer-Davis & Michael R. Kosorok, 2020. "Estimating Dynamic Treatment Regimes in Mobile Health Using V-Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 692-706, April.
    8. Xinkun Nie & Emma Brunskill & Stefan Wager, 2021. "Learning When-to-Treat Policies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 392-409, January.
    9. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    10. Sean Yiu & Li Su, 2018. "Covariate association eliminating weights: a unified weighting framework for causal effect estimation," Biometrika, Biometrika Trust, vol. 105(3), pages 709-722.
    11. Oliver Dukes & Vahe Avagyan & Stijn Vansteelandt, 2020. "Doubly robust tests of exposure effects under high‐dimensional confounding," Biometrics, The International Biometric Society, vol. 76(4), pages 1190-1200, December.
    12. Tran Linh & Yiannoutsos Constantin & Wools-Kaloustian Kara & Siika Abraham & van der Laan Mark & Petersen Maya, 2019. "Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study," The International Journal of Biostatistics, De Gruyter, vol. 15(2), pages 1-27, November.
    13. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    14. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    15. Michael Lechner & Ruth Miquel, 2010. "Identification of the effects of dynamic treatments by sequential conditional independence assumptions," Empirical Economics, Springer, vol. 39(1), pages 111-137, August.
    16. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-19, March.
    17. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-49, March.
    18. Audrey Boruvka & Daniel Almirall & Katie Witkiewitz & Susan A. Murphy, 2018. "Assessing Time-Varying Causal Effect Moderation in Mobile Health," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1112-1121, July.
    19. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    20. Eric B. Laber & Kristin A. Linn & Leonard A. Stefanski, 2014. "Interactive model building for Q-learning," Biometrika, Biometrika Trust, vol. 101(4), pages 831-847.
    21. Tran Linh & Yiannoutsos Constantin & Wools-Kaloustian Kara & Siika Abraham & van der Laan Mark & Petersen Maya, 2019. "Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study," The International Journal of Biostatistics, De Gruyter, vol. 15(2), pages 1-27, November.
    22. Erica E. M. Moodie & Thomas S. Richardson, 2010. "Estimating Optimal Dynamic Regimes: Correcting Bias under the Null," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 126-146, March.
    23. Shi, Chengchun & Fan, Ailin & Song, Rui & Lu, Wenbin, 2018. "High-dimensional A-learning for optimal dynamic treatment regimes," LSE Research Online Documents on Economics 102113, London School of Economics and Political Science, LSE Library.
    24. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    2. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    3. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    4. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    5. Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
    6. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
    7. Joseph Antonelli & Georgia Papadogeorgou & Francesca Dominici, 2022. "Causal inference in high dimensions: A marriage between Bayesian modeling and good frequentist properties," Biometrics, The International Biometric Society, vol. 78(1), pages 100-114, March.
    8. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    9. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    10. Heejun Shin & Joseph Antonelli, 2023. "Improved inference for doubly robust estimators of heterogeneous treatment effects," Biometrics, The International Biometric Society, vol. 79(4), pages 3140-3152, December.
    11. Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2022. "Automatic Debiased Machine Learning for Dynamic Treatment Effects and General Nested Functionals," Papers 2203.13887, arXiv.org, revised Jun 2023.
    12. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    13. Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    14. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    15. Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    17. Pan Zhao & Yifan Cui, 2023. "A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning," Papers 2310.09545, arXiv.org.
    18. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    19. Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
    20. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.06818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.