c$, where $t_{1}$ is the first-stage $t$-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage $F$-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting $c=0$, that is by screening on the sign of the \textit{estimated} first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV."> c$, where $t_{1}$ is the first-stage $t$-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage $F$-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting $c=0$, that is by screening on the sign of the \textit{estimated} first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV.">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.10556.html
   My bibliography  Save this paper

One Instrument to Rule Them All: The Bias and Coverage of Just-ID IV

Author

Listed:
  • Joshua Angrist
  • Michal Koles'ar
Abstract
We revisit the finite-sample behavior of single-variable just-identified instrumental variables (just-ID IV) estimators, arguing that in most microeconometric applications, the usual inference strategies are likely reliable. Three widely-cited applications are used to explain why this is so. We then consider pretesting strategies of the form $t_{1}>c$, where $t_{1}$ is the first-stage $t$-statistic, and the first-stage sign is given. Although pervasive in empirical practice, pretesting on the first-stage $F$-statistic exacerbates bias and distorts inference. We show, however, that median bias is both minimized and roughly halved by setting $c=0$, that is by screening on the sign of the \textit{estimated} first stage. This bias reduction is a free lunch: conventional confidence interval coverage is unchanged by screening on the estimated first-stage sign. To the extent that IV analysts sign-screen already, these results strengthen the case for a sanguine view of the finite-sample behavior of just-ID IV.

Suggested Citation

  • Joshua Angrist & Michal Koles'ar, 2021. "One Instrument to Rule Them All: The Bias and Coverage of Just-ID IV," Papers 2110.10556, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2110.10556
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.10556
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Isaiah Andrews & Timothy B. Armstrong, 2017. "Unbiased instrumental variables estimation under known first‐stage sign," Quantitative Economics, Econometric Society, vol. 8(2), pages 479-503, July.
    2. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    3. Alan B. Krueger, 1999. "Experimental Estimates of Education Production Functions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 497-532.
    4. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    5. Young, Alwyn, 2022. "Consistency without inference: instrumental variables in practical application," LSE Research Online Documents on Economics 115011, London School of Economics and Political Science, LSE Library.
    6. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    7. Angrist, Joshua D & Evans, William N, 1998. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
    8. Anna Mikusheva & Liyang Sun, 2022. "Inference with Many Weak Instruments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(5), pages 2663-2686.
    9. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
    10. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    11. Emmanuel Saez & Gabriel Zucman, 2016. "Editor's Choice Wealth Inequality in the United States since 1913: Evidence from Capitalized Income Tax Data," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(2), pages 519-578.
    12. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05c, School of Economics, The University of New South Wales.
    13. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    14. Chernozhukov, Victor & Hansen, Christian, 2008. "The reduced form: A simple approach to inference with weak instruments," Economics Letters, Elsevier, vol. 100(1), pages 68-71, July.
    15. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    16. Lang, Kevin, 1993. "Ability Bias, Discount Rate Bias and the Return to Education," MPRA Paper 24651, University Library of Munich, Germany.
    17. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    18. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    19. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    20. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    21. Young, Alwyn, 2022. "Consistency without Inference: Instrumental Variables in Practical Application," European Economic Review, Elsevier, vol. 147(C).
    22. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    23. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    24. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    25. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    26. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    27. Hanushek, Eric A, 1986. "The Economics of Schooling: Production and Efficiency in Public Schools," Journal of Economic Literature, American Economic Association, vol. 24(3), pages 1141-1177, September.
    28. Joshua D. Angrist & Victor Lavy, 1999. "Using Maimonides' Rule to Estimate the Effect of Class Size on Scholastic Achievement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 533-575.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeffrey Clemens & Philip G. Hoxie & Stan Veuger, 2022. "Was Pandemic Fiscal Relief Effective Fiscal Stimulus? Evidence from Aid to State and Local Governments," NBER Working Papers 30168, National Bureau of Economic Research, Inc.
    2. Bensch, Gunther & Ankel-Peters, Jörg & Vance, Colin, 2023. "Spotlight on Researcher Decisions – Infrastructure Evaluation, Instrumental Variables, and Specification Screening," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277703, Verein für Socialpolitik / German Economic Association.
    3. Tsiboe, Francis & Turner, Dylan, 2023. "The crop insurance demand response to premium subsidies: Evidence from U.S. Agriculture," Food Policy, Elsevier, vol. 119(C).
    4. Isaiah Andrews & Anna Mikusheva, 2022. "GMM is Inadmissible Under Weak Identification," Papers 2204.12462, arXiv.org, revised May 2023.
    5. Robert A. Moffitt & Matthew V. Zahn, 2019. "The Marginal Labor Supply Disincentives of Welfare: Evidence from Administrative Barriers to Participation," NBER Working Papers 26028, National Bureau of Economic Research, Inc.
    6. Michael Keane & Timothy Neal, 2021. "Robust Inference for the Frisch Labor Supply Elasticity," Discussion Papers 2021-07b, School of Economics, The University of New South Wales.
    7. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    8. Van de Sijpe, Nicolas & Windmeijer, Frank, 2023. "On the power of the conditional likelihood ratio and related tests for weak-instrument robust inference," Journal of Econometrics, Elsevier, vol. 235(1), pages 82-104.
    9. Ankel-Peters, Jörg & Vance, Colin & Bensch, Gunther, 2022. "Spotlight on researcher decisions – Infrastructure evaluation, instrumental variables, and first-stage specification screening," OSF Preprints sw6kd, Center for Open Science.
    10. Michael P Keane & Timothy Neal, 2024. "Robust inference for the Frisch labor supply," IFS Working Papers W24/46, Institute for Fiscal Studies.
    11. Wozniak, Abigail & Baker, Michael T. & Carter, Susan P., 2024. "Peer Effects and Marriage Formation," IZA Discussion Papers 17443, Institute of Labor Economics (IZA).
    12. Zachrisson, Henrik Daae & Dearing, Eric & Borgen, Nicolai T. & Sandsør, Astrid Marie Jorde & Karoly, Lynn A., 2021. "Zachrisson et al 2021 ECEC Achievement," EdArXiv zrctw, Center for Open Science.
    13. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    14. Moler-Zapata, S.; & Grieve, R.; & Basu, A.; & O'Neill, S.;, 2022. "How does a local Instrumental Variable Method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health, Econometrics and Data Group (HEDG) Working Papers 22/18, HEDG, c/o Department of Economics, University of York.
    15. Gandhi, Sahil & Green, Richard K. & Patranabis, Shaonlee, 2022. "Insecure property rights and the housing market: Explaining India’s housing vacancy paradox," Journal of Urban Economics, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    2. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    3. Joshua D. Angrist & Alan B. Krueger, 2001. "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 69-85, Fall.
    4. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    5. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    6. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    7. repec:zbw:rwidps:0023 is not listed on IDEAS
    8. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    9. Mazzutti, Caio Cícero Toledo Piza da Costa, 2016. "Three essays on the causal impacts of child labour laws in Brazil," Economics PhD Theses 0616, Department of Economics, University of Sussex Business School.
    10. Fertig, Michael, 2004. "What Can We Learn From International Student Performance Studies? Some Methodological Remarks," RWI Discussion Papers 23, RWI - Leibniz-Institut für Wirtschaftsforschung.
    11. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
    12. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.
    13. Michael Fertig, 2004. "What Can We Learn From International Student Performance Studies? Some Methodological Remarks," RWI Discussion Papers 0023, Rheinisch-Westfälisches Institut für Wirtschaftsforschung.
    14. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    15. Markus Frölich, 2004. "Programme Evaluation with Multiple Treatments," Journal of Economic Surveys, Wiley Blackwell, vol. 18(2), pages 181-224, April.
    16. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    17. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    18. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    19. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    20. Rosolia, Alfonso & Cipollone, Piero, 2011. "Schooling and Youth Mortality: Learning from a Mass Military Exemption," CEPR Discussion Papers 8431, C.E.P.R. Discussion Papers.
    21. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • J08 - Labor and Demographic Economics - - General - - - Labor Economics Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.10556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.