[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.04171.html
   My bibliography  Save this paper

Bayesian inference and superstatistics to describe long memory processes of financial time series

Author

Listed:
  • Geoffrey Ducournau
Abstract
One of the standardized features of financial data is that log-returns are uncorrelated, but absolute log-returns or their squares namely the fluctuating volatility are correlated and is characterized by heavy tailed in the sense that some moment of the absolute log-returns is infinite and typically non-Gaussian [20]. And this last characteristic change accordantly to different timescales. We propose to model this long-memory phenomenon by superstatistical dynamics and provide a Bayesian Inference methodology drawing on Metropolis-Hasting random walk sampling to determine which superstatistics among inverse-Gamma and log-Normal describe the best log-returns complexity on different timescales, from high to low frequency. We show that on smaller timescales (minutes) even though the Inverse-Gamma superstatistics works the best, the log-Normal model remains very reliable and suitable to fit the absolute log-returns probability density distribution with strong capacity of describing heavy tails and power law decays. On larger timescales (daily), we show in terms of Bayes factor that the inverse-Gamma superstatistics is preferred to the log-Normal model. We also show evidence of a transition of statistics from power law decay on small timescales to exponential decay on large scale with less heavy tails meaning that on larger time scales the fluctuating volatility tend to be memoryless, consequently superstatistics becomes less relevant.

Suggested Citation

  • Geoffrey Ducournau, 2021. "Bayesian inference and superstatistics to describe long memory processes of financial time series," Papers 2105.04171, arXiv.org.
  • Handle: RePEc:arx:papers:2105.04171
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.04171
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Tao & Serota, R.A., 2014. "A model for stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 89-115.
    2. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    3. S. M.D. Queirós & C. Tsallis, 2005. "On the connection between financial processes with stochastic volatility and nonextensive statistical mechanics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 48(1), pages 139-148, November.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Xu, Dan & Beck, Christian, 2016. "Transition from lognormal to χ2-superstatistics for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 173-183.
    6. Mandelbrot, Benoit, 1969. "Long-Run Linearity, Locally Gaussian Process, H-Spectra and Infinite Variances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 82-111, February.
    7. Biró, T.S. & Rosenfeld, R., 2008. "Microscopic origin of non-Gaussian distributions of financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1603-1612.
    8. Dan Xu & Christian Beck, 2015. "Transition from lognormal to chi-square superstatistics for financial time series," Papers 1506.01660, arXiv.org, revised Mar 2016.
    9. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    10. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    11. Erik Van der Straeten & Christian Beck, 2009. "Superstatistical fluctuations in time series: Applications to share-price dynamics and turbulence," Papers 0901.2271, arXiv.org, revised Sep 2009.
    12. Silvio M. Duarte Queiros & Constantino Tsallis, 2005. "On the connection between financial processes with stochastic volatility and nonextensive statistical mechanics," Papers cond-mat/0502151, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuke Uchiyama & Takanori Kadoya, 2018. "Superstatistics with cut-off tails for financial time series," Papers 1809.04775, arXiv.org.
    2. López Martín, María del Mar & García, Catalina García & García Pérez, José, 2012. "Treatment of kurtosis in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2032-2045.
    3. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    4. Xu, Dan & Beck, Christian, 2016. "Transition from lognormal to χ2-superstatistics for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 173-183.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    7. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    8. Yoshio Miyahara & Alexander Novikov, 2001. "Geometric Lévy Process Pricing Model," Research Paper Series 66, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    10. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    11. Mondher Bellalah & Marc Lavielle, 2002. "A Decomposition of Empirical Distributions with Applications to the Valuation of Derivative Assets," Multinational Finance Journal, Multinational Finance Journal, vol. 6(2), pages 99-130, June.
    12. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    13. Phoebe Koundouri & Nikolaos Kourogenis & Nikitas Pittis, 2016. "Statistical Modeling Of Stock Returns: Explanatory Or Descriptive? A Historical Survey With Some Methodological Reflections," Journal of Economic Surveys, Wiley Blackwell, vol. 30(1), pages 149-164, February.
    14. Christian Hugo Hoffmann & Charles Djordjevic, 2020. "Complexity, Power Laws and a Humean Argument in Risk Management: The Fundamental Inadequacy of Probability Theory as a Foundation for Modeling Complex Risk in Banking," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(3), pages 155-182, December.
    15. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    16. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    17. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    18. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    19. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    20. Su, EnDer & Wen Wong, Kai, 2019. "Testing the alternative two-state options pricing models: An empirical analysis on TXO," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 101-116.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.04171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.