[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2002.09911.html
   My bibliography  Save this paper

Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing

Author

Listed:
  • Walter Farkas
  • Ludovic Mathys
Abstract
The present article studies geometric step options in exponential L\'evy markets. Our contribution is manifold and extends several aspects of the geometric step option pricing literature. First, we provide symmetry and parity relations and derive various characterizations for both European-type and American-type geometric double barrier step options. In particular, we are able to obtain a jump-diffusion disentanglement for the early exercise premium of American-type geometric double barrier step contracts and its maturity-randomized equivalent as well as to characterize the diffusion and jump contributions to these early exercise premiums separately by means of partial integro-differential equations and ordinary integro-differential equations. As an application of our characterizations, we derive semi-analytical pricing results for (regular) European-type and American-type geometric down-and-out step call options under hyper-exponential jump-diffusion models. Lastly, we use the latter results to discuss the early exercise structure of geometric step options once jumps are added and to subsequently provide an analysis of the impact of jumps on the price and hedging parameters of (European-type and American-type) geometric step contracts.

Suggested Citation

  • Walter Farkas & Ludovic Mathys, 2020. "Geometric Step Options with Jumps. Parity Relations, PIDEs, and Semi-Analytical Pricing," Papers 2002.09911, arXiv.org.
  • Handle: RePEc:arx:papers:2002.09911
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2002.09911
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    2. G. Campolieti & R. Makarov & K. Wouterloot, 2013. "Pricing Step Options Under The Cev And Other Solvable Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(05), pages 1-36.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Ludovic Mathys, 2019. "On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options," Papers 1912.00454, arXiv.org.
    5. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Detemple, Jérôme & Laminou Abdou, Souleymane & Moraux, Franck, 2020. "American step options," European Journal of Operational Research, Elsevier, vol. 282(1), pages 363-385.
    7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    8. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    9. S. Z. Levendorskiǐ, 2004. "Pricing Of The American Put Under Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 303-335.
    10. Giuseppe Campolieti & Roman N. Makarov & Karl Wouterloot, 2013. "Pricing Step Options under the CEV and other Solvable Diffusion Models," Papers 1302.3771, arXiv.org.
    11. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Garman, Mark B. & Kohlhagen, Steven W., 1983. "Foreign currency option values," Journal of International Money and Finance, Elsevier, vol. 2(3), pages 231-237, December.
    14. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    15. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    16. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    17. Toshikazu Kimura, 2010. "Alternative Randomization For Valuing American Options," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(02), pages 167-187.
    18. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    19. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2013. "Efficient Laplace Inversion, Wiener-Hopf Factorization And Pricing Lookbacks," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-40.
    20. Ning Cai & Nan Chen & Xiangwei Wan, 2010. "Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 412-437, May.
    21. Walter Farkas & Ludovic Mathys & Nikola Vasiljevic, 2019. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Swiss Finance Institute Research Paper Series 19-76, Swiss Finance Institute.
    22. Mitya Boyarchenko & Svetlana Boyarchenko, 2011. "Double Barrier Options In Regime-Switching Hyper-Exponential Jump-Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(07), pages 1005-1043.
    23. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    24. Hofer & Mayer, 2013. "Pricing and Hedging of Lookback Options in Hyper-exponential Jump Diffusion Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(5), pages 489-511, November.
    25. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    26. Marc Chesney & M. Jeanblanc, 2004. "Pricing American currency options in an exponential Levy model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(3), pages 207-225.
    27. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johan Auster & Ludovic Mathys & Fabio Maeder, 2021. "JDOI Variance Reduction Method and the Pricing of American-Style Options," Papers 2104.01365, arXiv.org, revised May 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    2. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675, arXiv.org, revised Jan 2021.
    3. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    4. Walter Farkas & Ludovic Mathys & Nikola Vasiljević, 2021. "Intra‐Horizon expected shortfall and risk structure in models with jumps," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 772-823, April.
    5. Michael C. Fu & Bingqing Li & Guozhen Li & Rongwen Wu, 2017. "Option Pricing for a Jump-Diffusion Model with General Discrete Jump-Size Distributions," Management Science, INFORMS, vol. 63(11), pages 3961-3977, November.
    6. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2020. "Static and semistatic hedging as contrarian or conformist bets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 921-960, July.
    7. Shi, Chao, 2022. "Asymptotic Analysis of the Mixed-Exponential Jump Diffusion Model and Its Financial Applications," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    8. Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
    9. Vidal Nunes, João Pedro & Ruas, João Pedro & Dias, José Carlos, 2020. "Early exercise boundaries for American-style knock-out options," European Journal of Operational Research, Elsevier, vol. 285(2), pages 753-766.
    10. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient evaluation of double-barrier options and joint cpdf of a L\'evy process and its two extrema," Papers 2211.07765, arXiv.org.
    11. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    12. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.
    13. Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum," Papers 2312.05222, arXiv.org.
    14. Ludovic Mathys, 2019. "Valuing Tradeability in Exponential L\'evy Models," Papers 1912.00469, arXiv.org, revised Feb 2020.
    15. Ludovic Mathys, 2019. "On Extensions of the Barone-Adesi & Whaley Method to Price American-Type Options," Papers 1912.00454, arXiv.org.
    16. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    17. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
    18. Lian, Yu-Min & Chen, Jun-Home, 2022. "Foreign exchange option pricing under regime switching with asymmetrical jumps," Finance Research Letters, Elsevier, vol. 46(PA).
    19. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    20. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2022. "Efficient inverse $Z$-transform and pricing barrier and lookback options with discrete monitoring," Papers 2207.02858, arXiv.org, revised Jul 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2002.09911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.