[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.19412.html
   My bibliography  Save this paper

Dynamically Consistent Analysis of Realized Covariations in Term Structure Models

Author

Listed:
  • Dennis Schroers
Abstract
In this article we show how to analyze the covariation of bond prices nonparametrically and robustly, staying consistent with a general no-arbitrage setting. This is, in particular, motivated by the problem of identifying the number of statistically relevant factors in the bond market under minimal conditions. We apply this method in an empirical study which suggests that a high number of factors is needed to describe the term structure evolution and that the term structure of volatility varies over time.

Suggested Citation

  • Dennis Schroers, 2024. "Dynamically Consistent Analysis of Realized Covariations in Term Structure Models," Papers 2406.19412, arXiv.org.
  • Handle: RePEc:arx:papers:2406.19412
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.19412
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    2. Michael Tehranchi, 2005. "A note on invariant measures for HJM models," Finance and Stochastics, Springer, vol. 9(3), pages 389-398, July.
    3. Valentina Masarotto & Victor M. Panaretos & Yoav Zemel, 2019. "Procrustes Metrics on Covariance Operators and Optimal Transportation of Gaussian Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 172-213, February.
    4. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    5. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    6. Carlo Marinelli, 2010. "Well-posedness and invariant measures for HJM models with deterministic volatility and Levy noise," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 39-47.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Richard K. Crump & Nikolay Gospodinov, 2022. "On the Factor Structure of Bond Returns," Econometrica, Econometric Society, vol. 90(1), pages 295-314, January.
    9. Tiziano Vargiolu, 1999. "Invariant measures for the Musiela equation with deterministic diffusion term," Finance and Stochastics, Springer, vol. 3(4), pages 483-492.
    10. Benth, Fred Espen & Rüdiger, Barbara & Süss, Andre, 2018. "Ornstein–Uhlenbeck processes in Hilbert space with non-Gaussian stochastic volatility," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 461-486.
    11. Haojie Ren & Nan Chen & Changliang Zou, 2017. "Projection-based outlier detection in functional data," Biometrika, Biometrika Trust, vol. 104(2), pages 411-423.
    12. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Karbach, 2024. "Heat modulated affine stochastic volatility models for forward curve dynamics," Papers 2409.13070, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org, revised Jun 2024.
    2. Zdzisław Brzeźniak & Tayfun Kok, 2018. "Stochastic evolution equations in Banach spaces and applications to the Heath–Jarrow–Morton–Musiela equations," Finance and Stochastics, Springer, vol. 22(4), pages 959-1006, October.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    5. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    6. Fredrik Armerin & Bjarne Astrup Jensen & Tomas Bjork, 2007. "Term Structure Models with Parallel and Proportional Shifts," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(3), pages 243-260.
    7. A. Falco & LL. Navarro & J. Nave, 2010. "On the calibration of a Gaussian Heath-Jarrow-Morton model using consistent forward rate curves," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 495-504.
    8. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    10. Antje Berndt & Peter Ritchken & Zhiqiang Sun, 2010. "On Correlation and Default Clustering in Credit Markets," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2680-2729, July.
    11. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    12. Stefan Tappe, 2019. "Existence of affine realizations for L\'evy term structure models," Papers 1907.02363, arXiv.org.
    13. Antje Berndt & Peter Ritchken & Zhiqiang Sun, "undated". "On Correlation Effects and Default Clustering in Credit Models," GSIA Working Papers 2008-E36, Carnegie Mellon University, Tepper School of Business.
    14. Damir Filipovi'c & Stefan Tappe, 2019. "Existence of L\'evy term structure models," Papers 1907.03561, arXiv.org.
    15. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    16. Tappe, Stefan, 2016. "Affine realizations with affine state processes for stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 2062-2091.
    17. Virmani, Vineet, 2014. "Model Risk in Pricing Path-dependent Derivatives: An Illustration," IIMA Working Papers WP2014-03-22, Indian Institute of Management Ahmedabad, Research and Publication Department.
    18. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    19. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Constantin Mellios, 2007. "Interest rate options valuation under incomplete information," Annals of Operations Research, Springer, vol. 151(1), pages 99-117, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.19412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.