[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.04974.html
   My bibliography  Save this paper

Neural Network Modeling for Forecasting Tourism Demand in Stopi\'{c}a Cave: A Serbian Cave Tourism Study

Author

Listed:
  • Buda Baji'c
  • Sr{dj}an Mili'cevi'c
  • Aleksandar Anti'c
  • Slobodan Markovi'c
  • Nemanja Tomi'c
Abstract
For modeling the number of visits in Stopi\'{c}a cave (Serbia) we consider the classical Auto-regressive Integrated Moving Average (ARIMA) model, Machine Learning (ML) method Support Vector Regression (SVR), and hybrid NeuralPropeth method which combines classical and ML concepts. The most accurate predictions were obtained with NeuralPropeth which includes the seasonal component and growing trend of time-series. In addition, non-linearity is modeled by shallow Neural Network (NN), and Google Trend is incorporated as an exogenous variable. Modeling tourist demand represents great importance for management structures and decision-makers due to its applicability in establishing sustainable tourism utilization strategies in environmentally vulnerable destinations such as caves. The data provided insights into the tourist demand in Stopi\'{c}a cave and preliminary data for addressing the issues of carrying capacity within the most visited cave in Serbia.

Suggested Citation

  • Buda Baji'c & Sr{dj}an Mili'cevi'c & Aleksandar Anti'c & Slobodan Markovi'c & Nemanja Tomi'c, 2024. "Neural Network Modeling for Forecasting Tourism Demand in Stopi\'{c}a Cave: A Serbian Cave Tourism Study," Papers 2404.04974, arXiv.org.
  • Handle: RePEc:arx:papers:2404.04974
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.04974
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    2. Silviu Constantin & Ionuț Cornel Mirea & Alexandru Petculescu & Răzvan Adrian Arghir & Dragoș Ștefan Măntoiu & Marius Kenesz & Marius Robu & Oana Teodora Moldovan, 2021. "Monitoring Human Impact in Show Caves. A Study of Four Romanian Caves," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    3. Crouch, Geoffrey I. & Ritchie, J. R. Brent, 1999. "Tourism, Competitiveness, and Societal Prosperity," Journal of Business Research, Elsevier, vol. 44(3), pages 137-152, March.
    4. Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
    5. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.
    6. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    7. Dmitry A. Ruban, 2018. "Karst as Important Resource for Geopark-Based Tourism: Current State and Biases," Resources, MDPI, vol. 7(4), pages 1-8, December.
    8. Li, Hengyun & Hu, Mingming & Li, Gang, 2020. "Forecasting tourism demand with multisource big data," Annals of Tourism Research, Elsevier, vol. 83(C).
    9. Haiyan Song & Zixuan Gao & Xinyan Zhang & Shanshan Lin, 2012. "A web-based Hong Kong tourism demand forecasting system," International Journal of Networking and Virtual Organisations, Inderscience Enterprises Ltd, vol. 10(3/4), pages 275-291.
    10. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    11. Hui Li & Kannan Srinivasan, 2019. "Competitive Dynamics in the Sharing Economy: An Analysis in the Context of Airbnb and Hotels," Marketing Science, INFORMS, vol. 38(3), pages 365-391, May.
    12. Josef Zelenka & Jaroslav Kacetl, 2014. "The Concept of Carrying Capacity in Tourism," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(36), pages 641-641, May.
    13. Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
    3. Edmond H. C. Wu & Jihao Hu & Rui Chen, 2022. "Monitoring and forecasting COVID-19 impacts on hotel occupancy rates with daily visitor arrivals and search queries," Current Issues in Tourism, Taylor & Francis Journals, vol. 25(3), pages 490-507, February.
    4. Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
    5. Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
    6. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    7. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    8. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    9. Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
    10. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    11. Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Annals of Tourism Research, Elsevier, vol. 88(C).
    12. Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
    13. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    14. Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
    15. George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
    16. Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
    17. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    18. Nuria Rodríguez-López & M. Isabel Diéguez-Castrillón & Ana Gueimonde-Canto, 2019. "Sustainability and Tourism Competitiveness in Protected Areas: State of Art and Future Lines of Research," Sustainability, MDPI, vol. 11(22), pages 1-32, November.
    19. Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
    20. George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.04974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.