[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.05441.html
   My bibliography  Save this paper

An adaptive network-based approach for advanced forecasting of cryptocurrency values

Author

Listed:
  • Ali Mehrban
  • Pegah Ahadian
Abstract
This paper describes an architecture for predicting the price of cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy Inference System (ANFIS). Historical data of cryptocurrencies and indexes that are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D), and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach the data are hybrid and backpropagation algorithms, as well as grid partition, subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which are used in data clustering. The architectural performance designed in this paper has been compared with different inputs and neural network models in terms of statistical evaluation criteria. Finally, the proposed method can predict the price of digital currencies in a short time.

Suggested Citation

  • Ali Mehrban & Pegah Ahadian, 2024. "An adaptive network-based approach for advanced forecasting of cryptocurrency values," Papers 2401.05441, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2401.05441
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.05441
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alla A. Petukhina & Raphael C. G. Reule & Wolfgang Karl Härdle, 2021. "Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies," The European Journal of Finance, Taylor & Francis Journals, vol. 27(1-2), pages 8-30, January.
    2. Ahadian, P. & Parand, K., 2022. "Support vector regression for the temperature-stimulated drug release," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    2. M. Eren Akbiyik & Mert Erkul & Killian Kaempf & Vaiva Vasiliauskaite & Nino Antulov-Fantulin, 2021. "Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data," Papers 2110.14317, arXiv.org, revised Dec 2022.
    3. Elizaveta Zinovyeva & Raphael C. G. Reule & Wolfgang Karl Hardle, 2021. "Understanding Smart Contracts: Hype or Hope?," Papers 2103.08447, arXiv.org.
    4. Konstantin Häusler & Hongyu Xia, 2022. "Indices on cryptocurrencies: an evaluation," Digital Finance, Springer, vol. 4(2), pages 149-167, September.
    5. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    6. Olgun, Onur & Ekinci, Cumhur & Arıkan, Ramazan, 2024. "The performance of selected high-frequency trading proxies: An application on Turkish index futures market," Finance Research Letters, Elsevier, vol. 65(C).
    7. Ge, Hengshun & Yang, Haijun & Doukas, John A., 2024. "The optimal strategies of competitive high-frequency traders and effects on market liquidity," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 653-679.
    8. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    9. Scharnowski, Stefan & Shi, Yanghua, 2024. "Intraday herding and attention around the clock," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    10. Wen, Zhuzhu & Bouri, Elie & Xu, Yahua & Zhao, Yang, 2022. "Intraday return predictability in the cryptocurrency markets: Momentum, reversal, or both," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    11. Wang, Yifu & Lu, Wanbo & Lin, Min-Bin & Ren, Rui & Härdle, Wolfgang Karl, 2024. "Cross-exchange crypto risk: A high-frequency dynamic network perspective," International Review of Financial Analysis, Elsevier, vol. 94(C).
    12. Donglian Ma & Hisashi Tanizaki, 2022. "Intraday patterns of price clustering in Bitcoin," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    13. Jahanshahloo, Hossein & Corbet, Shaen & Oxley, Les, 2022. "Seeking sigma: Time-of-the-day effects on the Bitcoin network," Finance Research Letters, Elsevier, vol. 49(C).
    14. Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
    15. Danial Saef & Yuanrong Wang & Tomaso Aste, 2022. "Regime-based Implied Stochastic Volatility Model for Crypto Option Pricing," Papers 2208.12614, arXiv.org, revised Sep 2022.
    16. Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
    17. Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
    18. Colombo, Jefferson A. & Cruz, Fernando I. L. & Paese, Luis H. Z. & Cortes, Renan X., 2021. "The diversification benefits of cryptocurrencies in multi-asset portfolios: cross-country evidence," Textos para discussão 542, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.05441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.