[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.1020.html
   My bibliography  Save this paper

Shapes of implied volatility with positive mass at zero

Author

Listed:
  • Stefano De Marco
  • Caroline Hillairet
  • Antoine Jacquier
Abstract
We study the shapes of the implied volatility when the underlying distribution has an atom at zero and analyse the impact of a mass at zero on at-the-money implied volatility and the overall level of the smile. We further show that the behaviour at small strikes is uniquely determined by the mass of the atom up to high asymptotic order, under mild assumptions on the remaining distribution on the positive real line. We investigate the structural difference with the no-mass-at-zero case, showing how one can--theoretically--distinguish between mass at the origin and a heavy-left-tailed distribution. We numerically test our model-free results in stochastic models with absorption at the boundary, such as the CEV process, and in jump-to-default models. Note that while Lee's moment formula tells that implied variance is at most asymptotically linear in log-strike, other celebrated results for exact smile asymptotics such as Benaim and Friz (09) or Gulisashvili (10) do not apply in this setting--essentially due to the breakdown of Put-Call duality.

Suggested Citation

  • Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
  • Handle: RePEc:arx:papers:1310.1020
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.1020
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    2. Ian Martin, 2011. "Simple Variance Swaps," NBER Working Papers 16884, National Bureau of Economic Research, Inc.
    3. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    4. Matthew Lorig & Oriol Lozano Carbasse & Rafael Mendoza-Arriaga, 2012. "Variance Swaps on Defaultable Assets and Market Implied Time-Changes," Papers 1209.0697, arXiv.org, revised Jul 2013.
    5. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Delia Coculescu & Hélyette Geman & Monique Jeanblanc, 2008. "Valuation of default-sensitive claims under imperfect information," Finance and Stochastics, Springer, vol. 12(2), pages 195-218, April.
    8. repec:dau:papers:123456789/409 is not listed on IDEAS
    9. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.
    10. Robert Jarrow & Younes Kchia & Martin Larsson & Philip Protter, 2013. "Discretely sampled variance and volatility swaps versus their continuous approximations," Finance and Stochastics, Springer, vol. 17(2), pages 305-324, April.
    11. Pierre Collin‐Dufresne & Robert S. Goldstein, 2001. "Do Credit Spreads Reflect Stationary Leverage Ratios?," Journal of Finance, American Finance Association, vol. 56(5), pages 1929-1957, October.
    12. L. Rogers & M. Tehranchi, 2010. "Can the implied volatility surface move by parallel shifts?," Finance and Stochastics, Springer, vol. 14(2), pages 235-248, April.
    13. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    14. Campi, Luciano & Polbennikov, Simon & Sbuelz, Alessandro, 2009. "Systematic equity-based credit risk: A CEV model with jump to default," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 93-108, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Martini & Arianna Mingone, 2020. "No arbitrage SVI," Papers 2005.03340, arXiv.org, revised May 2021.
    2. Jaehyuk Choi & Lixin Wu, 2021. "A note on the option price and ‘Mass at zero in the uncorrelated SABR model and implied volatility asymptotics’," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1083-1086, July.
    3. Jaehyuk Choi & Jeonggyu Huh & Nan Su, 2023. "Tighter 'uniform bounds for Black-Scholes implied volatility' and the applications to root-finding," Papers 2302.08758, arXiv.org, revised Oct 2024.
    4. Vimal Raval & Antoine Jacquier, 2021. "The Log Moment formula for implied volatility," Papers 2101.08145, arXiv.org.
    5. Choi, Jaehyuk & Wu, Lixin, 2021. "The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    6. Cyril Grunspan & Joris Van Der Hoeven, 2020. "Effective Asymptotics Analysis For Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-23, March.
    7. Michael R. Tehranchi, 2020. "A Black–Scholes inequality: applications and generalisations," Finance and Stochastics, Springer, vol. 24(1), pages 1-38, January.
    8. Cyril Grunspan & Joris van der Hoeven, 2020. "Effective asymptotic analysis for finance," Post-Print hal-01573621, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    2. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    3. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    4. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    5. Gaoyue Guo & Antoine Jacquier & Claude Martini & Leo Neufcourt, 2012. "Generalised arbitrage-free SVI volatility surfaces," Papers 1210.7111, arXiv.org, revised May 2016.
    6. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    7. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    8. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    9. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    10. Arianna Mingone, 2022. "Smiles in delta," Papers 2209.00406, arXiv.org.
    11. Michael R. Tehranchi, 2020. "A Black–Scholes inequality: applications and generalisations," Finance and Stochastics, Springer, vol. 24(1), pages 1-38, January.
    12. Stefan Gerhold & Johannes F. Morgenbesser & Axel Zrunek, 2014. "Refined wing asymptotics for the Merton and Kou jump diffusion models," Papers 1401.1954, arXiv.org.
    13. Mario Dell’Era, 2014. "Closed Form Solution for Heston PDE By Geometrical Transformations," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(6), pages 793-807, June.
    14. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    15. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Extreme-Strike Asymptotics for General Gaussian Stochastic Volatility Models," Papers 1502.05442, arXiv.org, revised Feb 2017.
    16. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    17. Stefano De Marco & Claude Martini, 2017. "Moment generating functions and Normalized implied volatilities: unification and extension via Fukasawa's pricing formula," Papers 1703.00957, arXiv.org, revised May 2017.
    18. Antonie Kotzé & Rudolf Oosthuizen & Edson Pindza, 2015. "Implied and Local Volatility Surfaces for South African Index and Foreign Exchange Options," JRFM, MDPI, vol. 8(1), pages 1-40, January.
    19. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.
    20. Antoine Jacquier & Martin Keller-Ressel, 2015. "Implied volatility in strict local martingale models," Papers 1508.04351, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.