[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1203.2355.html
   My bibliography  Save this paper

Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias

Author

Listed:
  • Jos'e E. Figueroa-L'opez
  • Peter Tankov
Abstract
We characterize the small-time asymptotic behavior of the exit probability of a L\'evy process out of a two-sided interval and of the law of its overshoot, conditionally on the terminal value of the process. The asymptotic expansions are given in the form of a first-order term and a precise computable error bound. As an important application of these formulas, we develop a novel adaptive discretization scheme for the Monte Carlo computation of functionals of killed L\'evy processes with controlled bias. The considered functionals appear in several domains of mathematical finance (e.g., structural credit risk models, pricing of barrier options, and contingent convertible bonds) as well as in natural sciences. The proposed algorithm works by adding discretization points sampled from the L\'evy bridge density to the skeleton of the process until the overall error for a given trajectory becomes smaller than the maximum tolerance given by the user.

Suggested Citation

  • Jos'e E. Figueroa-L'opez & Peter Tankov, 2012. "Small-time asymptotics of stopped L\'evy bridges and simulation schemes with controlled bias," Papers 1203.2355, arXiv.org, revised Jul 2014.
  • Handle: RePEc:arx:papers:1203.2355
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1203.2355
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia Ribeiro & Nick Webber, 2006. "Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 333-352.
    2. Svetlana I. Boyarchenko & Sergei Z. Levendorskiĭ, 2002. "Barrier options," World Scientific Book Chapters, in: Non-Gaussian Merton-Black-Scholes Theory, chapter 8, pages 185-198, World Scientific Publishing Co. Pte. Ltd..
    3. Martin Becker, 2010. "Comment on 'Correcting for Simulation Bias in Monte Carlo Methods to Value Exotic Options in Models Driven by Levy Processes' by C. Ribeiro and N. Webber," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(2), pages 133-146.
    4. Rosenbaum, Mathieu & Tankov, Peter, 2011. "Asymptotic results for time-changed Lévy processes sampled at hitting times," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1607-1632, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael B. Giles & Yuan Xia, 2017. "Multilevel Monte Carlo for exponential Lévy models," Finance and Stochastics, Springer, vol. 21(4), pages 995-1026, October.
    2. Mike Giles & Yuan Xia, 2014. "Multilevel Monte Carlo For Exponential L\'{e}vy Models," Papers 1403.5309, arXiv.org, revised May 2017.
    3. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
    4. Aleksandar Mijatovic & Martijn Pistorius & Johannes Stolte, 2014. "Randomisation and recursion methods for mixed-exponential Levy models, with financial applications," Papers 1410.7316, arXiv.org.
    5. Kyoung-Kuk Kim & Sojung Kim, 2016. "Simulation of Tempered Stable Lévy Bridges and Its Applications," Operations Research, INFORMS, vol. 64(2), pages 495-509, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chuan-Ju & Kao, Ming-Yang, 2016. "Optimal search for parameters in Monte Carlo simulation for derivative pricing," European Journal of Operational Research, Elsevier, vol. 249(2), pages 683-690.
    2. José Figueroa-López & Sveinn Ólafsson, 2016. "Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility," Finance and Stochastics, Springer, vol. 20(1), pages 219-265, January.
    3. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    4. José E. Figueroa-López & Sveinn Ólafsson, 2016. "Short-term asymptotics for the implied volatility skew under a stochastic volatility model with Lévy jumps," Finance and Stochastics, Springer, vol. 20(4), pages 973-1020, October.
    5. Ye, Zhi-Sheng, 2013. "On the conditional increments of degradation processes," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2531-2536.
    6. José E. Figueroa-López & Sveinn Ólafsson, 2016. "Short-time expansions for close-to-the-money options under a Lévy jump model with stochastic volatility," Finance and Stochastics, Springer, vol. 20(1), pages 219-265, January.
    7. Alberto Bueno-Guerrero & Steven P. Clark, 2023. "Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps," Mathematics, MDPI, vol. 12(1), pages 1-39, December.
    8. repec:hum:wpaper:sfb649dp2009-021 is not listed on IDEAS
    9. Jos'e E. Figueroa-L'opez & Sveinn 'Olafsson, 2015. "Short-time asymptotics for the implied volatility skew under a stochastic volatility model with L\'evy jumps," Papers 1502.02595, arXiv.org, revised Dec 2015.
    10. Mathieu Rosenbaum & Peter Tankov, 2011. "Asymptotically optimal discretization of hedging strategies with jumps," Papers 1108.5940, arXiv.org, revised Apr 2014.
    11. Belomestny, Denis, 2009. "Spectral estimation of the fractional order of a Lévy process," SFB 649 Discussion Papers 2009-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Jos'e E. Figueroa-L'opez & Ruoting Gong & Christian Houdr'e, 2012. "High-order short-time expansions for ATM option prices of exponential L\'evy models," Papers 1208.5520, arXiv.org, revised Apr 2014.
    13. Ernst Eberlein & Kathrin Glau & Antonis Papapantoleon, 2009. "Analyticity of the Wiener-Hopf factors and valuation of exotic options in L\'evy models," Papers 0911.0373, arXiv.org, revised Oct 2010.
    14. Sergei Levendorskii, 2002. "Pseudo-diffusions and Quadratic term structure models," Papers cond-mat/0212249, arXiv.org, revised Apr 2004.
    15. Kenichiro Shiraya & Hiroki Uenishi & Akira Yamazaki, 2019. "A General Control Variate Method for Lévy Models in Finance (Published in European Journal of Operational Research.)," CARF F-Series CARF-F-455, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2020.
    16. N. Reich & C. Schwab & C. Winter, 2010. "On Kolmogorov equations for anisotropic multivariate Lévy processes," Finance and Stochastics, Springer, vol. 14(4), pages 527-567, December.
    17. Shiraya, Kenichiro & Uenishi, Hiroki & Yamazaki, Akira, 2020. "A general control variate method for Lévy models in finance," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1190-1200.
    18. Jos'e E. Figueroa-L'opez & Sveinn 'Olafsson, 2014. "Short-time expansions for close-to-the-money options under a L\'evy jump model with stochastic volatility," Papers 1404.0601, arXiv.org, revised Oct 2014.
    19. Lee, Hangsuck & Ha, Hongjun & Kong, Byungdoo & Lee, Minha, 2024. "Valuing three-asset barrier options and autocallable products via exit probabilities of Brownian bridge," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1203.2355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.