[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.05894.html
   My bibliography  Save this paper

Forward-Selected Panel Data Approach for Program Evaluation

Author

Listed:
  • Zhentao Shi
  • Jingyi Huang
Abstract
Policy evaluation is central to economic data analysis, but economists mostly work with observational data in view of limited opportunities to carry out controlled experiments. In the potential outcome framework, the panel data approach (Hsiao, Ching and Wan, 2012) constructs the counterfactual by exploiting the correlation between cross-sectional units in panel data. The choice of cross-sectional control units, a key step in its implementation, is nevertheless unresolved in data-rich environment when many possible controls are at the researcher's disposal. We propose the forward selection method to choose control units, and establish validity of the post-selection inference. Our asymptotic framework allows the number of possible controls to grow much faster than the time dimension. The easy-to-implement algorithms and their theoretical guarantee extend the panel data approach to big data settings.

Suggested Citation

  • Zhentao Shi & Jingyi Huang, 2019. "Forward-Selected Panel Data Approach for Program Evaluation," Papers 1908.05894, arXiv.org, revised Apr 2021.
  • Handle: RePEc:arx:papers:1908.05894
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.05894
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
    2. Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
    3. Du, Zaichao & Zhang, Lin, 2015. "Home-purchase restriction, property tax and housing price in China: A counterfactual analysis," Journal of Econometrics, Elsevier, vol. 188(2), pages 558-568.
    4. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    5. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    6. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    7. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Javier Gardeazabal & Ainhoa Vega‐Bayo, 2017. "An Empirical Comparison Between the Synthetic Control Method and HSIAO et al.'s Panel Data Approach to Program Evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 983-1002, August.
    9. Abhijit V. Banerjee & Esther Duflo, 2009. "The Experimental Approach to Development Economics," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 151-178, May.
    10. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    11. Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Lan, Xiaohuan & Li, Wei, 2018. "Swiss watch cycles: Evidence of corruption during leadership transition in China," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 1234-1252.
    14. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    15. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    16. Ouyang, Min & Peng, Yulei, 2015. "The treatment-effect estimation: A case study of the 2008 economic stimulus package of China," Journal of Econometrics, Elsevier, vol. 188(2), pages 545-557.
    17. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    18. Chen Lin & Randall Morck & Bernard Yeung & Xiaofeng Zhao, 2016. "What do we learn from stock price reactions to China’s first announcement of anti-corruption reforms?," NBER Working Papers 22001, National Bureau of Economic Research, Inc.
    19. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    20. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
    21. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    22. Bai, ChongEn & Li, Qi & Ouyang, Min, 2014. "Property taxes and home prices: A tale of two cities," Journal of Econometrics, Elsevier, vol. 180(1), pages 1-15.
    23. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    24. Cheng Hsiao & Qiankun Zhou, 2019. "Panel parametric, semiparametric, and nonparametric construction of counterfactuals," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 463-481, June.
    25. Haoyuan Ding & Hanming Fang & Shu Lin & Kang Shi, 2020. "Equilibrium Consequences of Corruption on Firms: Evidence from China’s Anti-Corruption Campaign," NBER Working Papers 26656, National Bureau of Economic Research, Inc.
    26. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luya Wang & Zheng Li & Qi Li, 2023. "A Tale of Two Policies: Examining Treatment Effects on Housing Prices in Shenzhen, China," Annals of Economics and Finance, Society for AEF, vol. 24(2), pages 277-288, November.
    2. Wei Lin & Zhentao Shi & Yishu Wang & Ting Hin Yan, 2023. "Unfolding Beijing in a Hedonic Way," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 317-340, January.
    3. Hongjun Li & Zheng Li & Cheng Hsiao, 2023. "Assessing the impacts of pandemic and the increase in minimum down payment rate on Shanghai housing prices," Empirical Economics, Springer, vol. 64(6), pages 2661-2682, June.
    4. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    2. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    3. Carlos Viana de Carvalho & Ricardo Masini & Marcelo Cunha Medeiros, 2016. "The perils of Counterfactual Analysis with Integrated Processes," Textos para discussão 654, Department of Economics PUC-Rio (Brazil).
    4. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
    6. Fu, Yifan & Zhong, Shiquan & Ling, Shuai & He, Zhengbing, 2024. "Closing the loophole of vehicle ownership restriction: The impact of non-local vehicle restriction on new vehicle registrations and air pollution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    7. Hongjun Li & Zheng Li & Cheng Hsiao, 2023. "Assessing the impacts of pandemic and the increase in minimum down payment rate on Shanghai housing prices," Empirical Economics, Springer, vol. 64(6), pages 2661-2682, June.
    8. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    9. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
    10. Echevarría, Cruz A. & Hasancebi, Serhat & García-Enríquez, Javier, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    11. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    12. Du, Zaichao & Pei, Pei, 2021. "A simple and robust counterfactual impact evaluation," Economics Letters, Elsevier, vol. 207(C).
    13. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    14. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    15. Luya Wang & Jeffrey S. Racine & Qiaoyu Wang, 2024. "Bootstrap Inference on a Factor Model Based Average Treatment Effects Estimator," Department of Economics Working Papers 2024-03, McMaster University.
    16. Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
    17. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    18. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    19. Shih-Chih Chen & Jianing Hou & De Xiao, 2018. "“One Belt, One Road” Initiative to Stimulate Trade in China: A Counter-Factual Analysis," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    20. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.05894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.