[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.02545.html
   My bibliography  Save this paper

Quantile-Frequency Analysis and Spectral Divergence Metrics for Diagnostic Checks of Time Series With Nonlinear Dynamics

Author

Listed:
  • Ta-Hsin Li
Abstract
Nonlinear dynamic volatility has been observed in many financial time series. The recently proposed quantile periodogram offers an alternative way to examine this phenomena in the frequency domain. The quantile periodogram is constructed from trigonometric quantile regression of time series data at different frequencies and quantile levels. It is a useful tool for quantile-frequency analysis (QFA) of nonlinear serial dependence. This paper introduces a number of spectral divergence metrics based on the quantile periodogram for diagnostic checks of financial time series models and model-based discriminant analysis. The parametric bootstrapping technique is employed to compute the $p$-values of the metrics. The usefulness of the proposed method is demonstrated empirically by a case study using the daily log returns of the S\&P 500 index over three periods of time together with their GARCH-type models. The results show that the QFA method is able to provide additional insights into the goodness of fit of these financial time series models that may have been missed by conventional tests. The results also show that the QFA method offers a more informative way of discriminant analysis for detecting regime changes in time series.

Suggested Citation

  • Ta-Hsin Li, 2019. "Quantile-Frequency Analysis and Spectral Divergence Metrics for Diagnostic Checks of Time Series With Nonlinear Dynamics," Papers 1908.02545, arXiv.org.
  • Handle: RePEc:arx:papers:1908.02545
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.02545
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    2. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-158, February.
    3. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    4. Ta-Hsin Li, 2014. "Quantile Periodogram And Time-Dependent Variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 322-340, July.
    5. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    6. Andrew A. Weiss, 1984. "Arma Models With Arch Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 129-143, March.
    7. Francq, Christian & Zakoian, Jean-Michel, 2013. "Inference in non stationary asymmetric garch models," MPRA Paper 44901, University Library of Munich, Germany.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Holger Dette & Marc Hallin & Tobias Kley & Stanislav Volgushev, 2011. "Of Copulas, Quantiles, Ranks and Spectra - An L1-Approach to Spectral Analysis," Working Papers ECARES ECARES 2011-038, ULB -- Universite Libre de Bruxelles.
    10. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    11. Li, Ta-Hsin, 2008. "Laplace Periodogram for Time Series Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 757-768, June.
    12. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    13. Ta-Hsin Li, 2012. "Quantile Periodograms," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 765-776, June.
    14. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    15. Ria Van Hecke & Stanislav Volgushev & Holger Dette, 2018. "Fourier Analysis of Serial Dependence Measures," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(1), pages 75-89, January.
    16. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ta‐Hsin Li, 2020. "From zero crossings to quantile‐frequency analysis of time series with an application to nondestructive evaluation," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(6), pages 1111-1130, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ta‐Hsin Li, 2021. "Quantile‐frequency analysis and spectral measures for diagnostic checks of time series with nonlinear dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 270-290, March.
    2. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    3. Tak Siu & John Lau & Hailiang Yang, 2007. "On Valuing Participating Life Insurance Contracts with Conditional Heteroscedasticity," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 14(3), pages 255-275, September.
    4. Thilo A. Schmitt & Rudi Schafer & Holger Dette & Thomas Guhr, 2015. "Quantile Correlations: Uncovering temporal dependencies in financial time series," Papers 1507.04990, arXiv.org.
    5. Tse, Chin-Bun & Rodgers, Timothy & Niklewski, Jacek, 2014. "The 2007 financial crisis and the UK residential housing market: Did the relationship between interest rates and house prices change?," Economic Modelling, Elsevier, vol. 37(C), pages 518-530.
    6. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    7. Turgut Kısınbay, 2010. "Predictive ability of asymmetric volatility models at medium-term horizons," Applied Economics, Taylor & Francis Journals, vol. 42(30), pages 3813-3829.
    8. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    9. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    10. Milton Abdul Thorlie & Lixin Song & Muhammad Amin & Xiaoguang Wang, 2015. "Modeling and forecasting of stock index volatility with APARCH models under ordered restriction," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 329-356, August.
    11. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    12. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    13. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    14. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    15. Ntebogang Dinah Moroke, 2015. "An Optimal Generalized Autoregressive Conditional Heteroscedasticity Model for Forecasting the South African Inflation Volatility," Journal of Economics and Behavioral Studies, AMH International, vol. 7(4), pages 134-149.
    16. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    17. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    18. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    19. Michael McKenzie & Heather Mitchell & Robert Brooks & Robert Faff, 2001. "Power ARCH modelling of commodity futures data on the London Metal Exchange," The European Journal of Finance, Taylor & Francis Journals, vol. 7(1), pages 22-38.
    20. Stefan Birr & Stanislav Volgushev & Tobias Kley & Holger Dette & Marc Hallin, 2017. "Quantile spectral analysis for locally stationary time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1619-1643, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.02545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.