[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1901.04945.html
   My bibliography  Save this paper

Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure

Author

Listed:
  • Sandhya Devi
Abstract
Earlier studies have shown that stock market distributions can be well described by distributions derived from Tsallis entropy, which is a generalization of Shannon entropy to non-extensive systems. In this paper, Tsallis relative entropy (TRE), which is the generalization of Kullback-Leibler relative entropy (KLRE) to non-extensive systems, is investigated as a possible risk measure in constructing risk optimal portfolios whose returns beat market returns. Portfolios are constructed by binning the risk values and allocating the stocks to bins according to their risk values. The average return in excess of market returns for each bin is calculated to get the risk-return patterns of the portfolios. The results are compared with those from three other risk measures: 1) the commonly used 'beta' of the Capital Asset Pricing Model (CAPM), 2) Kullback-Leibler relative entropy, and 3) the relative standard deviation. Tests carried out for both long (~18 years) and shorter terms (~9 years), which include the dot-com bubble and the 2008 crash periods, show that a linear fit can be obtained for the risk-excess return profiles of all four risk measures. However, in all cases, the profiles from Tsallis relative entropy show a more consistent behavior in terms of both goodness of fit and the variation of returns with risk, than the other three risk measures.

Suggested Citation

  • Sandhya Devi, 2019. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," Papers 1901.04945, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1901.04945
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1901.04945
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jensen, Michael C, 1969. "Risk, The Pricing of Capital Assets, and the Evaluation of Investment Portfolios," The Journal of Business, University of Chicago Press, vol. 42(2), pages 167-247, April.
    2. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    3. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    4. A. Dionisio & R. Menezes & D. A. Mendes, 2006. "An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 161-164, March.
    5. Eugene F. Fama, 1968. "Risk, Return And Equilibrium: Some Clarifying Comments," Journal of Finance, American Finance Association, vol. 23(1), pages 29-40, March.
    6. Sandhya Devi, 2016. "Financial Market Dynamics: Superdiffusive or not?," Papers 1608.07752, arXiv.org, revised Sep 2017.
    7. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    8. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Sandhya Devi & Sherman Page, 2022. "Tsallis Relative entropy from asymmetric distributions as a risk measure for financial portfolios," Papers 2205.13625, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Devi, Sandhya, 2018. "Financial Portfolios based on Tsallis Relative Entropy as the Risk Measure," MPRA Paper 91614, University Library of Munich, Germany.
    2. Sandhya Devi & Sherman Page, 2022. "Tsallis Relative entropy from asymmetric distributions as a risk measure for financial portfolios," Papers 2205.13625, arXiv.org.
    3. Attiya Yasmeen Javid, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE Research Report 2000:3, Pakistan Institute of Development Economics.
    4. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Frankfurter, George M. & Phillips, Herbert E., 1996. "Normative implications of equilibrium models: Homogeneous expectations and other artificialities," Journal of Economic Behavior & Organization, Elsevier, vol. 31(1), pages 67-83, October.
    6. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    7. Stosic, Darko & Stosic, Dusan & Ludermir, Teresa B. & Stosic, Tatijana, 2018. "Nonextensive triplets in cryptocurrency exchanges," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1069-1074.
    8. Sandhya Devi, 2021. "Asymmetric Tsallis distributions for modelling financial market dynamics," Papers 2102.04532, arXiv.org.
    9. Attiya Y. Javed, 2000. "Alternative Capital Asset Pricing Models: A Review of Theory and Evidence," PIDE-Working Papers 2000:179, Pakistan Institute of Development Economics.
    10. Hany Shawky & Ronald Forbes & Alan Frankle, 1983. "Liquidity Services and Capital Market Equilibrium: The Case for Money Market Mutual Funds," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 6(2), pages 141-152, June.
    11. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    12. Brahmadev Panda & Rudra Prasanna Mahapatra & Samson Moharana, 2015. "Myth of Equity Mutual Fund Performance," Vision, , vol. 19(3), pages 200-209, September.
    13. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    14. Heuts, R.M.J., 1977. "Capital market models for portfolio selection (A revised version)," Other publications TiSEM d8385669-c29b-4bf1-ba60-7, Tilburg University, School of Economics and Management.
    15. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Oberndorfer, Ulrich & Schmidt, Peter & Wagner, Marcus & Ziegler, Andreas, 2013. "Does the stock market value the inclusion in a sustainability stock index? An event study analysis for German firms," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 497-509.
    17. Norman C. Miller & Marina v. N. Whitman, 1972. "The Outflow of Short-term Funds from the United States: Adjustments of Stocks and Flows," NBER Chapters, in: International Mobility and Movement of Capital, pages 253-286, National Bureau of Economic Research, Inc.
    18. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    19. Diks, Cees & Hommes, Cars & Zeppini, Paolo, 2013. "More memory under evolutionary learning may lead to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 808-812.
    20. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1901.04945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.